Atmospheric and Oceanic Factors Related to the Increasing Summer High Temperature Extremes on the Tibetan Plateau under the Background of Global Warming

Zunya Wang aNational Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Zunya Wang in
Current site
Google Scholar
PubMed
Close
,
Xingwen Jiang bHeavy Rain and Drought–Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Institute of Tibetan Plateau Meteorology, China Meteorological Administration, Chengdu, Sichuan, China

Search for other papers by Xingwen Jiang in
Current site
Google Scholar
PubMed
Close
,
Zongjian Ke aNational Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Zongjian Ke in
Current site
Google Scholar
PubMed
Close
, and
Yafang Song aNational Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Yafang Song in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The related atmospheric and oceanic factors are investigated in this analysis to understand the natural attributes responsible for the significant increase of the high temperature extremes (HTEs) on the Tibetan Plateau (TP) in summer. It is found that a stronger-than-normal South Asian high (SAH) and corresponding weaker-than-normal East Asian jet, an anomalous anticyclone and intensified midlevel westerly wind over the TP, and a more extensive, stronger, farther westward- and northward-stretching western Pacific subtropical high motivate more occurrences of HTEs over the TP on the interannual time scale. From 1961 to 2021, these crucial circulation patterns show a significant changing trend favorable for the occurrence of HTEs and thus contribute to its great increase. Further, the significant warmings of sea surface temperature (SST) in the tropical western Indian, northern North Pacific, and western North Atlantic Oceans make great contributions through different air–sea interactive processes as the Matsuno–Gill response, zonal vertical circulation cell, and mid- to high-latitude teleconnection wave train, respectively. Meanwhile, the interdecadal variability plays an important role. A breakpoint at the early twenty-first century is detected in the occurrence of summer HTEs on the TP. Both the crucial circulation patterns and the SST anomalies in the key oceanic regions experienced significant interdecadal transition to favor the occurrence of HTEs. In particular, the Atlantic multidecadal oscillation (AMO) is significantly and positively correlated with the interdecadal variation of summer HTEs on the TP. The zonal teleconnection wave train triggered by AMO forms a stronger-than-normal SAH and strengthened midlevel westerly airflow over the TP, conducive to the increase of summer HTEs on the TP.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingwen Jiang, xingwen.jiang@yahoo.com

Abstract

The related atmospheric and oceanic factors are investigated in this analysis to understand the natural attributes responsible for the significant increase of the high temperature extremes (HTEs) on the Tibetan Plateau (TP) in summer. It is found that a stronger-than-normal South Asian high (SAH) and corresponding weaker-than-normal East Asian jet, an anomalous anticyclone and intensified midlevel westerly wind over the TP, and a more extensive, stronger, farther westward- and northward-stretching western Pacific subtropical high motivate more occurrences of HTEs over the TP on the interannual time scale. From 1961 to 2021, these crucial circulation patterns show a significant changing trend favorable for the occurrence of HTEs and thus contribute to its great increase. Further, the significant warmings of sea surface temperature (SST) in the tropical western Indian, northern North Pacific, and western North Atlantic Oceans make great contributions through different air–sea interactive processes as the Matsuno–Gill response, zonal vertical circulation cell, and mid- to high-latitude teleconnection wave train, respectively. Meanwhile, the interdecadal variability plays an important role. A breakpoint at the early twenty-first century is detected in the occurrence of summer HTEs on the TP. Both the crucial circulation patterns and the SST anomalies in the key oceanic regions experienced significant interdecadal transition to favor the occurrence of HTEs. In particular, the Atlantic multidecadal oscillation (AMO) is significantly and positively correlated with the interdecadal variation of summer HTEs on the TP. The zonal teleconnection wave train triggered by AMO forms a stronger-than-normal SAH and strengthened midlevel westerly airflow over the TP, conducive to the increase of summer HTEs on the TP.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingwen Jiang, xingwen.jiang@yahoo.com
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2003: Climatic change in mountain regions: A review of possible impacts. Climatic Change, 59, 531, https://doi.org/10.1023/A:1024458411589.

    • Search Google Scholar
    • Export Citation
  • Benner, T. C., 1999: Central England temperatures: Long-term variability and teleconnections. Int. J. Climate, 19, 391403, https://doi.org/10.1002/(SICI)1097-0088(19990330)19:4<391::AID-JOC365>3.0.CO;2-Z.

    • Search Google Scholar
    • Export Citation
  • Cao, L., Y. Zhu, G. Tang, F. Yuan, and Z. Yang, 2016: Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol., 36, 43844392, https://doi.org/10.1002/joc.4639.

    • Search Google Scholar
    • Export Citation
  • Chen, F., C. An, G. Dong, and D. Zhang, 2017: Human activities, environmental changes, and rise and decline of Silk Road civilization in pan-Third Pole region (in Chinese). Bull. Chin. Acad. Sci., 32, 967975, https://doi.org/10.16418/j.issn.1000-3045.2017.09.006.

    • Search Google Scholar
    • Export Citation
  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496, https://doi.org/10.1038/nclimate1452.

    • Search Google Scholar
    • Export Citation
  • Cui, Y., A. Duan, Y. Liu, and G. Wu, 2015: Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA. Climate Dyn., 45, 16171634, https://doi.org/10.1007/s00382-014-2417-9.

    • Search Google Scholar
    • Export Citation
  • Ding, J., L. Cuo, Y. Zhang, and F. Zhu, 2018: Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963–2015. Sci. Rep., 8, 11860, https://doi.org/10.1038/s41598-018-30320-0.

    • Search Google Scholar
    • Export Citation
  • Ding, T., Y. Yuan, H. Gao, and W. Li, 2020: Impact of the North Atlantic sea surface temperature on the summer high temperature in northern China. Int. J. Climatol., 40, 22962309, https://doi.org/10.1002/joc.6333.

    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2003: The main spatial heating patterns over the Tibetan Plateau in July and the corresponding distributions of circulation and precipitation over eastern Asia. Acta Meteor. Sin., 61, 447456, https://doi.org/10.11676/qxxb2003.043.

    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2006: Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett., 33, L22704, https://doi.org/10.1029/2006GL027946.

    • Search Google Scholar
    • Export Citation
  • Duan, A., Z. Xiao, and G. Wu, 2016: Characteristics of climate change over the Tibetan Plateau under the global warming during 1979–2014 (in Chinese). Climate Change Res., 12 (5), 374381.

    • Search Google Scholar
    • Export Citation
  • Duan, A., R. Sun, and J. He, 2017: Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high: A land–air–sea interaction perspective. Adv. Atmos. Sci., 34, 157168, https://doi.org/10.1007/s00376-016-6008-z.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, https://doi.org/10.1126/science.289.5487.2068.

    • Search Google Scholar
    • Export Citation
  • Fouillet, A., and Coauthors, 2006: Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health, 80, 1624, https://doi.org/10.1007/s00420-006-0089-4.

    • Search Google Scholar
    • Export Citation
  • Frauenfeld, O. W., T. Zhang, and M. C. Serreze, 2005: Climate change and variability using European Centre for medium-range weather forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J. Geophys. Res., 110, D02101, https://doi.org/10.1029/2004JD005230.

    • Search Google Scholar
    • Export Citation
  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, https://doi.org/10.3354/cr019193.

    • Search Google Scholar
    • Export Citation
  • Gao, M., J. Yang, D. Gong, P. Shi, Z. Han, and S. J. Kim, 2019: Footprints of Atlantic multidecadal oscillation in the low-frequency variation of extreme high temperature in the Northern Hemisphere. J. Climate, 32, 791802, https://doi.org/10.1175/JCLI-D-18-0446.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Guo, D., J. Sun, K. Yang, N. Pepin, and Y. Xu, 2019: Revisiting recent elevation-dependent warming on the Tibetan Plateau using satellite-based data sets. J. Geophys. Res. Atmos., 124, 85118521, https://doi.org/10.1029/2019JD030666.

    • Search Google Scholar
    • Export Citation
  • Haines, A., R. S. Kovats, D. Campbell-Lendrum, and C. Corvalan, 2006: Climate change and human health: Impacts, vulnerability, and mitigation. Lancet, 367, 21012109, https://doi.org/10.1016/S0140-6736(06)68933-2.

    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, L. Zhang, X. Chen, and W. Zhang, 2023: Extremely hot East Asia and flooding western South Asia in the summer of 2022 tied to reversed flow over Tibetan Plateau. Climate Dyn., 61, 21032119, https://doi.org/10.1007/s00382-023-06669-y.

    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, X. Qu, and R. Huang, 2012: The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer. Adv. Atmos. Sci., 29, 91100, https://doi.org/10.1007/s00376-011-0209-2.

    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., and Coauthors, 2017: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), version 5. NOAA NCEI, accessed 22 June 2022, https://doi.org/10.7289/V5T72FNM.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Hussain, S., A. Khaliq, B. Ali, H. A. Hussain, T. Qadir, and S. Hussain, 2019: Temperature extremes: Impact on rice growth and development. Plant Abiotic Stress Tolerance, M. Hasanuzzaman et al., Eds., Springer, 153–171, https://doi.org/10.1007/978-3-030-06118-0_6.

  • Immerzeel, W. W., L. P. H. Van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 1–29.

  • IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte and P. Zhai, Eds., Cambridge University Press, 1–11.

  • Jiang, X., Y. Li, S. Yang, K. Yang, and J. Chen, 2016: Interannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western Maritime Continent. J. Climate, 29, 121138, https://doi.org/10.1175/JCLI-D-15-0181.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, S., Y. Xu, Q. You, W. A. Flügel, N. Pepin, and T. Yao, 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5, 015101, https://doi.org/10.1088/1748-9326/5/1/015101.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Griffin, 202 pp.

  • Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, F., B. Wang, Y. He, W. Huang, S. Xu, L. Liu, J. Liu, and L. Li, 2021: Important role of North Atlantic air–sea coupling in the interannual predictability of summer precipitation over the eastern Tibetan Plateau. Climate Dyn., 56, 14331448, https://doi.org/10.1007/s00382-020-05542-6.

    • Search Google Scholar
    • Export Citation
  • Li, J., and C. Ruan, 2018: The North Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates. Environ. Res. Lett., 13, 024007, https://doi.org/10.1088/1748-9326/aa9d33.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Ding, and W. Li, 2017: Interdecadal variability of the Afro-Asian summer monsoon system. Adv. Atmos. Sci., 34, 833846, https://doi.org/10.1007/s00376-017-6247-7.

    • Search Google Scholar
    • Export Citation
  • Liu, G., R. Wu, Y. Zhang, and S. Nan, 2014: The summer snow cover anomaly over the Tibetan Plateau and its association with simultaneous precipitation over the mei-yu-baiu region. Adv. Atmos. Sci., 31, 755764, https://doi.org/10.1007/s00376-013-3183-z.

    • Search Google Scholar
    • Export Citation
  • Liu, G., R. Wu, S. Sun, and H. Wang, 2015: Synergistic contribution of precipitation anomalies over northwestern India and the South China Sea to high temperature over the Yangtze River valley. Adv. Atmos. Sci., 32, 12551265, https://doi.org/10.1007/s00376-015-4280-y.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Search Google Scholar
    • Export Citation
  • Liu, X., Z. Yin, X. Shao, and N. Qin, 2006: Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J. Geophys. Res., 111, D19109, https://doi.org/10.1029/2005JD006915.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. Li, W. Ai, and Q. Li, 2012: Reconstruction and application of the monthly western Pacific subtropical high indices (in Chinese). J. Appl. Meteor. Sci., 23, 414423, http://qikan.camscma.cn/article/id/20120404.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. Wang, H. Zhou, and G. Wu, 2017: Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing II. Sensible heating over Tibetan–Iranian Plateau. Sci. China Earth Sci., 60, 733744, https://doi.org/10.1007/s11430-016-9016-3.

    • Search Google Scholar
    • Export Citation
  • Lu, M., S. Yang, Z. Li, B. He, S. He, and Z. Wang, 2018: Possible effect of the Tibetan Plateau on the “upstream” climate over West Asia, North Africa, South Europe and the North Atlantic. Climate Dyn., 51, 14851498, https://doi.org/10.1007/s00382-017-3966-5.

    • Search Google Scholar
    • Export Citation
  • Lu, M., B. Huang, Z. Li, S. Yang, and Z. Wang, 2019: Role of Atlantic air–sea interaction in modulating the effect of Tibetan Plateau heating on the upstream climate over Afro-Eurasia–Atlantic regions. Climate Dyn., 53, 509519, https://doi.org/10.1007/s00382-018-4595-3.

    • Search Google Scholar
    • Export Citation
  • Luo, M., and N. C. Lau, 2017: Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. J. Climate, 30, 703720, https://doi.org/10.1175/JCLI-D-16-0269.1.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898, https://doi.org/10.1002/joc.693.

    • Search Google Scholar
    • Export Citation
  • McMichael, A. J., R. E. Woodruff, and S. Hales, 2006: Climate change and human health: Present and future risks. Lancet, 367, 859869, https://doi.org/10.1016/S0140-6736(06)68079-3.

    • Search Google Scholar
    • Export Citation
  • Paniw, M., C. Duncan, F. Groenewoud, J. A. Drewe, M. Manser, A. Ozgul, and T. Clutton-Brock, 2022: Higher temperature extremes exacerbate negative disease effects in a social mammal. Nat. Climate Change, 12, 284290, https://doi.org/10.1038/s41558-022-01284-x.

    • Search Google Scholar
    • Export Citation
  • Pepin, N., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Search Google Scholar
    • Export Citation
  • Qin, J., K. Yang, S. Liang, and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, https://doi.org/10.1007/s10584-009-9733-9.

    • Search Google Scholar
    • Export Citation
  • Qiu, J., 2008: China: The third pole. Nature, 454, 393396, https://doi.org/10.1038/454393a.

  • Ramanathan, V., M. V. Ramana, G. Roberts, D. Kim, C. Corrigan, C. Chung, and D. Winker, 2007: Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448, 575575, https://doi.org/10.1038/nature06019.

    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. R. Miller, and M. Xu, 2009: Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor. Geophys. Res. Lett., 36, L06703, https://doi.org/10.1029/2009GL037245.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, https://doi.org/10.1002/qj.49712253408.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rong, X., R. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 38663873, https://doi.org/10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sturaro, G. A., 2003: Closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite data. Climate Dyn., 21, 309316, https://doi.org/10.1007/s00382-003-0334-4.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Search Google Scholar
    • Export Citation
  • Thompson, V., and Coauthors, 2022: The 2021 western North America heat wave among the most extreme events ever recorded globally. Sci. Adv., 8, eabm6860, https://doi.org/10.1126/sciadv.abm6860.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006gl026894.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, X. Wang, S. K. Fong, and K. C. Leong, 2013: Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection. J. Geophys. Res. Atmos., 118, 83068319, https://doi.org/10.1002/jgrd.50633.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. Duan, and G. Wu, 2014: Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in east China: Case studies using the WRF model. Climate Dyn., 42, 28852898, https://doi.org/10.1007/s00382-013-1800-2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., Q. Zhang, S. Sun, and P. Wang, 2022: Interdecadal variation of the number of days with drought in China based on the standardized precipitation evapotranspiration index (SPEI). J. Climate, 35, 20032018, https://doi.org/10.1175/JCLI-D-20-0985.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., X. Jiang, Z. Ke, and Y. Song, 2023: Interannual variation of the onset of the Tibetan Plateau rainy season and its relationship with the sea surface temperature in the North Pacific. Int. J. Climatol., 43, 46624676, https://doi.org/10.1002/joc.8109.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, C. Li, W. A. Müller, and J. Lin, 2019: Improved decadal prediction of Northern-Hemisphere summer land temperature. Climate Dyn., 53, 13571369, https://doi.org/10.1007/s00382-019-04658-8.

    • Search Google Scholar
    • Export Citation
  • Wu, G., W. Li, and H. Guo, 1997: Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian summer monsoon. Collection in Memory of Zhao Jiuzhang, D. Z. Ye, Ed., Science Press, 116–126.

  • Wu, G., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, https://doi.org/10.1175/JHM609.1.

    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and Coauthors, 2015: Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev., 2, 100116, https://doi.org/10.1093/nsr/nwu045.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., B. Bake, J. Zhang, and H. Rasulov, 2015: Spatio-temporal patterns of drought in North Xinjiang, China, 1961–2012 based on meteorological drought index. J. Arid Land, 7, 527543, https://doi.org/10.1007/s40333-015-0125-x.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, Z. Jiang, and T. Ma, 2012a: Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: From the East Asian summer monsoon perspective. J. Climate, 25, 24812489, https://doi.org/10.1175/JCLI-D-11-00135.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., Z. Jiang, J. Li, S. Zhong, and L. Wang, 2012b: Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency. Climate Dyn., 39, 23932402, https://doi.org/10.1007/s00382-012-1439-4.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., P. Zhang, H. Chen, and Y. Li, 2016: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? Climate Dyn., 46, 34053417, https://doi.org/10.1007/s00382-015-2775-y.

    • Search Google Scholar
    • Export Citation
  • Xu, X., L. Dong, Y. Zhao, and Y. Wang, 2019: Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation (in Chinese). Chin. Sci. Bull., 64, 28302841, https://doi.org/10.1360/TB-2019-0203.

    • Search Google Scholar
    • Export Citation
  • Yang, F., Z. Ma, T. Xu, and X. Ye, 1992: A tertiary paleomagnetic stratigraphic profile in Qaidam Basin (in Chinese). Acta Petrol. Sin., 13 (2), 97101.

    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Search Google Scholar
    • Export Citation
  • Yang, K., D. Guo, W. Hua, N. Pepin, K. Yang, and D. Li, 2022: Tibetan Plateau temperature extreme changes and their elevation dependency from ground-based observations. J. Geophys. Res. Atmos., 127, e2021JD035734, https://doi.org/10.1029/2021JD035734.

    • Search Google Scholar
    • Export Citation
  • Yang, X., Y. Zhang, W. Zhang, Y. Yan, Z. Wang, M. Ding, and D. Chu, 2006: Climate change in Mt. Qomolangma region since 1971. J. Geogr. Sci., 16, 326336, https://doi.org/10.1007/s11442-006-0308-7.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., Z. Zhu, X. Shen, L. Jiang, and T. Li, 2023: The influences of Atlantic sea surface temperature anomalies on the ENSO-independent interannual variability of East Asian summer monsoon rainfall. J. Climate, 36, 677692, https://doi.org/10.1175/JCLI-D-22-0061.1.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2017: From Tibetan Plateau to third pole and pan-third pole (in Chinese). Bull. Chinese Acad. Sci., 32, 924931, https://doi.org/10.16418/j.issn.1000-3045.2017.09.001.

    • Search Google Scholar
    • Export Citation
  • Yin, H., Y. Sun, and M. G. Donat, 2019: Changes in temperature extremes on the Tibetan Plateau and their attribution. Environ. Res. Lett., 14, 124015, https://doi.org/10.1088/1748-9326/ab503c.

    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, N. Pepin, and Y. Yan, 2008a: Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophys. Res. Lett., 35, L04704, https://doi.org/10.1029/2007GL032669.

    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, E. Aguilar, and Y. Yan, 2008b: Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res., 113, D07101, https://doi.org/10.1029/2007JD009389.

    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, N. Pepin, W. A. Flügel, A. Sanchez-Lorenzo, Y. Yan, and Y. Zhang, 2010: Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Global Planet. Change, 72, 1124, https://doi.org/10.1016/j.gloplacha.2010.04.003.

    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, J. Li, D. Chen, P. Zhai, and Z. Ji, 2021a: Several research frontiers of climate change over the Tibetan Plateau (in Chinese). J. Glaciol. Geocryol., 43, 885901, https://doi.org/10.7522/j.issn.1000-0240.2021.0029.

    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2021b: Warming amplification over the Arctic Pole and third pole: Trends, mechanisms and consequences. Earth-Sci. Rev., 217, 103625, https://doi.org/10.1016/j.earscirev.2021.103625.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., J. Xue, W. Wang, and J. Sun, 2014: Comparative analysis of extreme high temperature weather in the summers of 2013 and 2003. Atmos. Oceanic Sci. Lett., 7, 132136, https://doi.org/10.3878/j.issn.1674-2834.13.0073.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., 2007: Perspectives on environmental study of response to climatic and land cover/land use change over the Qinghai-Tibetan plateau: An introduction. Arctic Antarct. Alpine Res., 39, 631635.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., and L. Chen, 2001: Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Sci. China Earth Sci., 44D, 858864, https://doi.org/10.1007/BF02907098.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., S. Yang, R. Wu, Z. Wen, J. Chen, and H. Wang, 2012: Asian origin of interannual variations of summer climate over the extratropical North Atlantic Ocean. J. Climate, 25, 65946609, https://doi.org/10.1175/JCLI-D-11-00617.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., L. Li, H. Li, and Q. Bao, 2008: Progress in climate change attribution and projection studies (in Chinese). Chin. J. Atmos. Sci., 32, 906922, http://staff.lasg.ac.cn/qbao/paper/2008/2008_dqkx_ztj.pdf.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., S. Wang, and G. Huang, 2016: Assessing climate change impacts on human-perceived temperature extremes and underlying uncertainties. J. Geophys. Res. Atmos., 124, 38003821, https://doi.org/10.1029/2018JD029444.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and Coauthors, 2013: Climate extremes: Challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. Climate Science for Serving Society, G. R. Asrar and J. W. Hurrell, Eds., Springer, 339–389, https://doi.org/10.1007/978-94-007-6692-1_13.

All Time Past Year Past 30 Days
Abstract Views 433 433 50
Full Text Views 85 85 2
PDF Downloads 108 108 3