The Quantitative Role of Moisture and Vertical Motion in Shaping Summer Heavy Rainfall over North China under Two Distinct Large-Scale Weather Patterns

Jiao Li aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bInstitute of Tibetan Plateau Meteorology, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Jiao Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4411-079X
,
Yang Zhao cFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Key Laboratory of Physical Oceanography and Academy of the Future Ocean, Ocean University of China, Qingdao, China
dCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Yang Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3306-9835
,
Deliang Chen eRegional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Deliang Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0288-5618
,
Ping Zhao bInstitute of Tibetan Plateau Meteorology, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Ping Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4076-7452
,
Chi Zhang fKey Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Chi Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2547-7804
, and
Yinjun Wang gState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Yinjun Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3352-3815
Restricted access

Abstract

Two distinct categories of weather patterns, denoted as Type 1 and Type 2, which show higher-than-expected frequency of summer heavy rainfall days (HRDs) over North China (NC), are selected from nine weather patterns categorized by the self-organizing map algorithm during 1979–2019. The respective HRDs over NC exhibit dissimilar characteristics, with Type 1 showing a northern distribution and Type 2 a southern distribution. The quantitative disparities in terms of moisture content and vertical motion are discussed in reactions to the synoptic-scale patterns associated with HRDs. The outcomes of a 20-day backward tracking, using the so-called Water Accounting Model-2layers, reveal noteworthy contrasts in moisture sources. Type 1 predominantly receives moisture from the western North Pacific, while Type 2 relies more on contributions from the Arabian Sea, Bay of Bengal, and Eurasia. However, the major moisture sources with grid cells contributing more than 0.01 mm show a consistent cumulative contribution of 77% for Type 1 and 80% for Type 2. The finding suggests that the discrepancy between the two types cannot be solely attributed to moisture supply. Further examination of the transverse and shearwise Q-vector components provides insights into how these distinct weather patterns influence HRDs by the alteration of vertical motion. In Type 1, an upper-level jet entrance induces a thermally direct secondary circulation that enhances vertical motion, while a baroclinic trough plays a dominant role in generating vertical motion in Type 2. Moreover, these unique configurations for each type of weather pattern are not only pre-existing but also intensified during HRDs.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Zhao, qkylyy520@163.com

Abstract

Two distinct categories of weather patterns, denoted as Type 1 and Type 2, which show higher-than-expected frequency of summer heavy rainfall days (HRDs) over North China (NC), are selected from nine weather patterns categorized by the self-organizing map algorithm during 1979–2019. The respective HRDs over NC exhibit dissimilar characteristics, with Type 1 showing a northern distribution and Type 2 a southern distribution. The quantitative disparities in terms of moisture content and vertical motion are discussed in reactions to the synoptic-scale patterns associated with HRDs. The outcomes of a 20-day backward tracking, using the so-called Water Accounting Model-2layers, reveal noteworthy contrasts in moisture sources. Type 1 predominantly receives moisture from the western North Pacific, while Type 2 relies more on contributions from the Arabian Sea, Bay of Bengal, and Eurasia. However, the major moisture sources with grid cells contributing more than 0.01 mm show a consistent cumulative contribution of 77% for Type 1 and 80% for Type 2. The finding suggests that the discrepancy between the two types cannot be solely attributed to moisture supply. Further examination of the transverse and shearwise Q-vector components provides insights into how these distinct weather patterns influence HRDs by the alteration of vertical motion. In Type 1, an upper-level jet entrance induces a thermally direct secondary circulation that enhances vertical motion, while a baroclinic trough plays a dominant role in generating vertical motion in Type 2. Moreover, these unique configurations for each type of weather pattern are not only pre-existing but also intensified during HRDs.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Zhao, qkylyy520@163.com

Supplementary Materials

    • Supplemental Materials (PDF 0.8422 MB)
Save
  • Agel, L., M. Barlow, S. B. Feldstein, and W. J. Gutowski, 2017: Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Climate Dyn., 50, 121, https://doi.org/10.1007/s00382-017-3724-8.

    • Search Google Scholar
    • Export Citation
  • An, N., and Z. Zuo, 2021: Investigating the influence of synoptic circulation patterns on regional dry and moist heat waves in North China. Climate Dyn., 57, 12271240, https://doi.org/10.1007/s00382-021-05769-x.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. W. Kållberg, S. Kobayashi, and S. M. Uppala, 2009: The ERA-Interim archive. ECMWF Rep., 20 pp., http://www.ecmwf.int/research/era/do/get/era-interim.

  • Cassano, E. N., A. H. Lynch, J. J. Cassano, and M. R. Koslow, 2006: Classification of synoptic patterns in the western Arctic associated with extreme events at Barrow, Alaska, USA. Climate Res., 30, 8397, https://doi.org/10.3354/cr030083.

    • Search Google Scholar
    • Export Citation
  • Chen, B., X. D. Xu, and T. L. Zhao, 2018: Quantifying oceanic moisture exports to mainland China in association with summer precipitation. Climate Dyn., 51, 42714286, https://doi.org/10.1007/s00382-017-3925-1.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., and J. Zhang, 2020: The characteristics of late summer extreme precipitation in northern China and associated large-scale circulations. Int. J. Climatol., 40, 51705187, https://doi.org/10.1002/joc.6512.

    • Search Google Scholar
    • Export Citation
  • Chu, Q. C., R. Zhi, Q. G. Wang, and G. L. Feng, 2019: Roles of moisture sources and transport in precipitation variabilities during boreal summer over East China. Climate Dyn., 53, 54375457, https://doi.org/10.1007/s00382-019-04877-z.

    • Search Google Scholar
    • Export Citation
  • Dai, L., J. Wright, and R. Fu, 2020: Moisture and energy budget perspectives on summer drought in North China. J. Climate, 33, 10 14910 167, https://doi.org/10.1175/JCLI-D-20-0176.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fu, S. M., Y. C. Zhang, H. J. Wang, H. Tang, W. L. Li, and J. H. Sun, 2022: On the evolution of a long-lived mesoscale convective vortex that acted as a crucial condition for the extremely strong hourly precipitation in Zhengzhou. J. Geophys. Res. Atmos., 127, e2021JD036233, https://doi.org/10.1029/2021JD036233.

    • Search Google Scholar
    • Export Citation
  • Gao, Y. X., P. C. Hsu, S. J. Che, C. W. Yu, and S. R. Han, 2022: Origins of intraseasonal precipitation variability over North China in the rainy season. J. Climate, 35, 62196236, https://doi.org/10.1175/JCLI-D-21-0832.1.

    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., S. E. Perkins-Kirkpatrick, and S. E. Renwick, 2016: Projected changes in synoptic weather patterns over New Zealand examined through self-organizing maps. Int. J. Climatol., 36, 39343948, https://doi.org/10.1002/joc.4604.

    • Search Google Scholar
    • Export Citation
  • Gimeno-Sotelo, L., and L. Gimeno, 2023: Where does the link between atmospheric moisture transport and extreme precipitation matter? Wea. Climate Extremes, 39, 100536, https://doi.org/10.1016/j.wace.2022.100536.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Search Google Scholar
    • Export Citation
  • Jiang, Z., S. Jiang, Y. Shi, Z. Liu, W. Li, and L. Li, 2017: Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010. J. Geophys. Res. Atmos., 122, 600613, https://doi.org/10.1002/2016JD025795.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., S. B. Feldstein, and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 63546371, https://doi.org/10.1175/2008JCLI2380.1.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., B. D. Schmidt, and D. G. Duffy, 1992: Quasigeostrophic vertical motions diagnosed from along- and cross-isentrope components of the Q vector. Mon. Wea. Rev., 120, 731741, https://doi.org/10.1175/1520-0493(1992)120<0731:QVMDFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 1995: Self-Organizing Maps. Springer Series in Information Sciences, Vol. 30, Springer, 362 pp.

  • Lee, D. K., J. G. Park, and J. W. Kim, 2008: Heavy rainfall events lasting 19 days from July 31 to August 17, 1998, over Korea. J. Meteor. Soc. Japan, 86, 313333, https://doi.org/10.2151/jmsj.86.313.

    • Search Google Scholar
    • Export Citation
  • Leung, M. Y. T., S. Qiu, and W. Zhou, 2018: Modulations of rising motion and moisture on summer precipitation over the middle and lower reaches of the Yangtze River. Climate Dyn., 51, 42594269, https://doi.org/10.1007/s00382-018-4247-7.

    • Search Google Scholar
    • Export Citation
  • Li, J., Y. Zhao, and Z. Tang, 2020: Projection of future summer precipitation over the Yellow River Basin: A moisture budget perspective. Atmosphere, 11, 1307, https://doi.org/10.3390/atmos11121307.

    • Search Google Scholar
    • Export Citation
  • Li, J., Y. Zhao, D. L. Chen, Y. Kang, and H. Wang, 2021: Future precipitation changes in three key sub-regions of East Asia: The roles of thermodynamics and dynamics. Climate Dyn., 59, 13771398, https://doi.org/10.1007/s00382-021-06043-w.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and S. Y. Wang, 2013: Analysis of human vulnerability to the extreme rainfall event on 21–22 July 2012 in Beijing, China. Nat. Hazard Earth. Syst., 13, 29112926, https://doi.org/10.5194/nhess-13-2911-2013.

    • Search Google Scholar
    • Export Citation
  • Liu, X., M. Yang, H. Wang, K. Liu, N. Dong, H. Wang, L. Zhang, and W. Fan, 2023: Moisture sources and atmospheric circulation associated with the record-breaking rainstorm over Zhengzhou city in July 2021. Nat. Hazards, 116, 817836, https://doi.org/10.1007/s11069-022-05700-5.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self‐organizing map for feature extraction. J. Geophys. Res., 111, C05018, https://doi.org/10.1029/2005JC003117.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. B., C. Zhang, and Q. H. Tang, 2021: Moisture source variations for summer rainfall in different intensity classes over Huaihe River Valley, China. Climate Dyn., 57, 11211133, https://doi.org/10.1007/s00382-021-05762-4.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. R. Lintner, and A. Sweeney, 2017: Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the northwestern United States using self-organizing maps. J. Climate, 30, 28292847, https://doi.org/10.1175/JCLI-D-16-0670.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Y. Du, 2023: The roles of low-level jets in “21·7” Henan extremely persistent heavy rainfall event. Adv. Atmos. Sci., 40, 350373, https://doi.org/10.1007/s00376-022-2026-1.

    • Search Google Scholar
    • Export Citation
  • Luo, Y. L., J. H. Zhang, M. Yu, X. D. Liang, R. D. Xia, Y. Y. Gao, X. Y. Gao, and J. F. Yin, 2023: On the influences of urbanization on the extreme rainfall over Zhengzhou on 20 July 2021: A convection-permitting ensemble modeling study. Adv. Atmos. Sci., 40, 393409, https://doi.org/10.1007/s00376-022-2048-8.

    • Search Google Scholar
    • Export Citation
  • Nie, J., and B. Fan, 2019: Roles of dynamic forcings and diabatic heating in summer extreme precipitation in East China and the southeastern United States. J. Climate, 32, 58155831, https://doi.org/10.1175/JCLI-D-19-0188.1.

    • Search Google Scholar
    • Export Citation
  • Nie, Y., and J. Sun, 2022: Moisture sources and transport for extreme precipitation over Henan in July 2021. Geophys. Res. Lett., 49, e2021GL097446, https://doi.org/10.1029/2021GL097446.

    • Search Google Scholar
    • Export Citation
  • Olmo, M., and M. L. Bettolli, 2021: Extreme daily precipitation in southern South America: Statistical characterization and circulation types using observational datasets and regional climate models. Climate Dyn., 57, 895916, https://doi.org/10.1007/s00382-021-05748-2.

    • Search Google Scholar
    • Export Citation
  • Paxton, A., J. T. Schoof, T. W. Ford, and J. W. F. Remo, 2021: Extreme precipitation in the Great Lakes region: Trend estimation and relation with large-scale circulation and humidity. Front. Water, 3, 782847, https://doi.org/10.3389/frwa.2021.782847.

    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewiston, 2005: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar. Geogr., 29, 188212, https://doi.org/10.1080/789610199.

    • Search Google Scholar
    • Export Citation
  • Schuenemann, K. C., J. J. Cassano, and J. Finnis, 2009: Synoptic forcing of precipitation over Greenland: Climatology for 1961–99. J. Hydrometeor., 10, 6078, https://doi.org/10.1175/2008JHM1014.1.

    • Search Google Scholar
    • Export Citation
  • Shin, C. S., and T. Y. Lee, 2005: Development mechanisms for the heavy rainfalls of 6–7 August 2002 over the middle of the Korean Peninsula. J. Meteor. Soc. Japan, 83, 683709, https://doi.org/10.2151/jmsj.83.683.

    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. J. Wang, 2014: Analysis of the major atmospheric moisture sources affecting three sub-regions of East China. Int. J. Climatol., 35, 22432257, https://doi.org/10.1002/joc.4145.

    • Search Google Scholar
    • Export Citation
  • Sun, W., J. Li, R. Yu, and W. Yuan, 2015: Two major circulation structures leading to heavy summer rainfall over central North China. J. Geophys. Res. Atmos., 120, 44664482, https://doi.org/10.1002/2014JD022853.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Van der Ent, R. J., 2014: A new view on the hydrological cycle over continents. Ph.D. thesis, Delft University of Technology, 106 pp.

  • Van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127.

    • Search Google Scholar
    • Export Citation
  • Van der Ent, R. J., O. A. Tuinenburg, H. R. Knoche, H. Kunstmann, and H. H. G. Savenije, 2013: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol. Earth Syst. Sci., 17, 48694884, https://doi.org/10.5194/hess-17-4869-2013.

    • Search Google Scholar
    • Export Citation
  • Vettigli, G., 2021: MiniSom. Accessed 10 May 2022, https://github.com/JustGlowing/minisom.

  • Wang, N., X. M. Zeng, Y. Q. Zhang, J. Zhu, and S. H. Jiang, 2018: The atmospheric moisture residence time and reference time for moisture tracking over China. J. Hydrometeor., 19, 11311147, https://doi.org/10.1175/JHM-D-17-0204.1.

    • Search Google Scholar
    • Export Citation
  • Wei, P., and Coauthors, 2023: On the key dynamical processes supporting the 21.7 Zhengzhou record-breaking hourly rainfall in China. Adv. Atmos. Sci., 40, 337349, https://doi.org/10.1007/s00376-022-2061-y.

    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, X. Shi, and S. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budget. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., M. Gao, N. Xie, and Z. Q. Gao, 2020: Relating anomalous large-scale atmospheric circulation patterns to temperature and precipitation anomalies in the East Asian monsoon region. Atmos. Res., 232, 104679, https://doi.org/10.1016/j.atmosres.2019.104679.

    • Search Google Scholar
    • Export Citation
  • Yin, L., F. Ping, J. H. Mao, and S. G. Jin, 2023: Analysis on precipitation efficiency of the “21.7” Henan extremely heavy rainfall event. Adv. Atmos. Sci., 40, 374392, https://doi.org/10.1007/s00376-022-2054-x.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., H. Tsuji, and Y. N. Takayabu, 2020: The effects of an upper-tropospheric trough on the heavy rainfall event in July 2018 over Japan. J. Meteor. Soc. Japan, 98, 235255, https://doi.org/10.2151/jmsj.2020-013.

    • Search Google Scholar
    • Export Citation
  • Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2020: Moisture sources for precipitation in Southwest China in summer and the changes during the extreme droughts of 2006 and 2011. J. Hydrol., 591, 125333, https://doi.org/10.1016/j.jhydrol.2020.125333.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Q. Li, 2014: Tracking the moisture sources of an extreme precipitation event in Shandong, China in July 2007: A computational analysis. J. Meteor. Res., 28, 634644, https://doi.org/10.1007/s13351-014-3084-9.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Tang, D. L. Chen, and R. J. van der Ent, 2019: Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau. J. Hydrometeor., 20, 217229, https://doi.org/10.1175/JHM-D-18-0094.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., Y. Lin, P. Zhao, X. Yu, S. Wang, H. Kang, and Y. Ding, 2013: The Beijing extreme rainfall of 21 July 2012: ‘Right results’ but for wrong reasons. Geophys. Res. Lett., 40, 14261431, https://doi.org/10.1002/grl.50304.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q. H., R. M. Li, J. Z. Sun, F. Lu, J. Xu, and F. Zhang, 2023: A review of research on the record-breaking precipitation event in Henan Province, China, July 2021. Adv. Atmos. Sci., 40, 14851500, https://doi.org/10.1007/s00376-023-2360-y.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., Q. Chu, Z. Zuo, and Y. Qi, 2021: Summertime moisture sources and transportation pathways for China and associated atmospheric circulation patterns. Front. Earth Sci., 9, 756943, https://doi.org/10.3389/feart.2021.756943.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., Y. Chen, Y. Luo, B. Liu, G. Ren, T. Zhou, M. V. Cristian, and M. Y. Chang, 2022: Revealing the circulation pattern most conducive to precipitation extremes in Henan Province of North China. Geophys. Res. Lett., 49, e2022GL098034, https://doi.org/10.1029/2022GL098034.

    • Search Google Scholar
    • Export Citation
  • Zhao, D. J., H. X. Xu, Y. Li, Y. B. Yu, Y. H. Duan, X. D. Xu, and L. S. Chen, 2024: Locally opposite responses of the 2023 Beijing–Tianjin–Hebei extreme rainfall event to global anthropogenic warming. npj Climate Atmos. Sci., 7, 38, https://doi.org/10.1038/s41612-024-00584-7.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., and L. X. Chen, 2001: Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation. Adv. Atmos. Sci., 18, 106116, https://doi.org/10.1007/s00376-001-0007-3.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. D. Xu, J. Li, R. Zhang, Y. Kang, and W. Huang, 2019a: The large-scale circulation patterns responsible for extreme precipitation over the North China Plain in midsummer. J. Geophys. Res. Atmos., 124, 12 79412 809, https://doi.org/10.1029/2019JD030583.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. D. Xu, T. L. Zhao, and X. J. Yang, 2019b: Effects of the Tibetan Plateau and its second staircase terrain on rainstorms over North China: From the perspective of water vapour transport. Int. J. Climatol., 39, 31213133, https://doi.org/10.1002/joc.6000.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., D. L. Chen, J. Li, D. D. Chen, Y. Chang, J. Li, and R. Qin, 2020: Enhancement of the summer extreme precipitation over North China by interactions between moisture convergence and topographic settings. Climate Dyn., 54, 27132730, https://doi.org/10.1007/s00382-020-05139-z.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., L. Deng, Z. W. Li, and Y. J. Wang, 2022: Quantitative attribution of vertical motion responsible for summer heavy rainfall over North China. J. Geophys. Res. Atmos., 127, e2021JD035765, https://doi.org/10.1029/2021JD035765.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., S. W. Son, and S. Y. Back, 2023: The critical role of the upper-level synoptic disturbance on the China Henan “21.7” extreme precipitation event. SOLA, 19, 4249, https://doi.org/10.2151/sola.2023-006.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., P. Zhai, and Y. Chen, 2020: Contribution of changes in synoptic‐scale circulation patterns to the past summer precipitation regime shift in eastern China. Geophys. Res. Lett., 47, e2020GL087728, https://doi.org/10.1029/2020GL087728.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., F. Song, R. Lin, and X. D. Chen, 2013: The 2012 North China floods: Explaining an extreme rainfall event in the context of a longer-term drying tendency [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 94 (9), S49S51.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 248 248 34
Full Text Views 83 83 7
PDF Downloads 130 130 12