Impact of Parameterized Convection on the Storm Track and Near-Surface Jet Response to Global Warming: Implications for Mechanisms of the Future Poleward Shift

Chaim I. Garfinkel aThe Hebrew University of Jerusalem, Institute of Earth Sciences, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel

Search for other papers by Chaim I. Garfinkel in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7258-666X
,
Benny Keller aThe Hebrew University of Jerusalem, Institute of Earth Sciences, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel

Search for other papers by Benny Keller in
Current site
Google Scholar
PubMed
Close
,
Orli Lachmy bDepartment of Natural Sciences, The Open University of Israel, Ra’anana, Israel

Search for other papers by Orli Lachmy in
Current site
Google Scholar
PubMed
Close
,
Ian White aThe Hebrew University of Jerusalem, Institute of Earth Sciences, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
bDepartment of Natural Sciences, The Open University of Israel, Ra’anana, Israel

Search for other papers by Ian White in
Current site
Google Scholar
PubMed
Close
,
Edwin P. Gerber cCourant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Edwin P. Gerber in
Current site
Google Scholar
PubMed
Close
,
Martin Jucker dClimate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Martin Jucker in
Current site
Google Scholar
PubMed
Close
, and
Ori Adam aThe Hebrew University of Jerusalem, Institute of Earth Sciences, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel

Search for other papers by Ori Adam in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While a poleward shift of the near-surface jet and storm track in response to increased greenhouse gases appears to be robust, the magnitude of this change is uncertain and differs across models, and the mechanisms for this change are poorly constrained. An intermediate complexity GCM is used in this study to explore the factors governing the magnitude of the poleward shift and the mechanisms involved. The degree to which parameterized subgrid-scale convection is inhibited has a leading-order effect on the poleward shift, with a simulation with more convection (and less large-scale precipitation) simulating a significantly weaker shift, and eventually no shift at all if convection is strongly preferred over large-scale precipitation. Many of the physical processes proposed to drive the poleward shift are equally active in all simulations (even those with no poleward shift). Hence, we can conclude that these mechanisms are not of leading-order significance for the poleward shift in any of the simulations. The thermodynamic budget, however, provides useful insight into differences in the jet and storm track response among the simulations. It helps identify midlatitude moisture and latent heat release as a crucial differentiator. These results have implications for intermodel spread in the jet, hydrological cycle, and storm track response to increased greenhouse gases in intermodel comparison projects.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaim I. Garfinkel, chaim.garfinkel@mail.huji.ac.il

Abstract

While a poleward shift of the near-surface jet and storm track in response to increased greenhouse gases appears to be robust, the magnitude of this change is uncertain and differs across models, and the mechanisms for this change are poorly constrained. An intermediate complexity GCM is used in this study to explore the factors governing the magnitude of the poleward shift and the mechanisms involved. The degree to which parameterized subgrid-scale convection is inhibited has a leading-order effect on the poleward shift, with a simulation with more convection (and less large-scale precipitation) simulating a significantly weaker shift, and eventually no shift at all if convection is strongly preferred over large-scale precipitation. Many of the physical processes proposed to drive the poleward shift are equally active in all simulations (even those with no poleward shift). Hence, we can conclude that these mechanisms are not of leading-order significance for the poleward shift in any of the simulations. The thermodynamic budget, however, provides useful insight into differences in the jet and storm track response among the simulations. It helps identify midlatitude moisture and latent heat release as a crucial differentiator. These results have implications for intermodel spread in the jet, hydrological cycle, and storm track response to increased greenhouse gases in intermodel comparison projects.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaim I. Garfinkel, chaim.garfinkel@mail.huji.ac.il

Supplementary Materials

    • Supplemental Materials (PDF 1.6854 MB)
Save
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, https://doi.org/10.1007/s00382-005-0018-3.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere-troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 16611672, https://doi.org/10.1002/qj.479.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, https://doi.org/10.1126/science.1087143.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2011: Rossby-wave scales, propagation and the variability of eddy-driven jets. J. Atmos. Sci., 68, 28932908, https://doi.org/10.1175/JAS-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Barpanda, P., and T. Shaw, 2017: Using the moist static energy budget to understand storm-track shifts across a range of time scales. J. Atmos. Sci., 74, 24272446, https://doi.org/10.1175/JAS-D-17-0022.1.

    • Search Google Scholar
    • Export Citation
  • Bartana, H., C. I. Garfinkel, O. Shamir, and J. Rao, 2022: Projected future changes in equatorial wave spectrum in CMIP6. Climate Dyn., 60, 32773289, https://doi.org/10.1007/s00382-022-06510-y.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, https://doi.org/10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, https://doi.org/10.1175/2009JAS3078.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, https://doi.org/10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and T. G. Shepherd, 2019: The role of the stratospheric polar vortex for the austral jet response to greenhouse gas forcing. Geophys. Res. Lett., 46, 69726979, https://doi.org/10.1029/2019GL082883.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, https://doi.org/10.1002/2014GL060043.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Ming, 2020: Large atmospheric waves will get stronger, while small waves will get weaker by the end of the 21st century. Geophys. Res. Lett., 47, e2020GL090441, https://doi.org/10.1029/2020GL090441.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., Y. Ming, and J. Yuval, 2022: The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nat. Climate Change, 12, 553557, https://doi.org/10.1038/s41558-022-01368-8.

    • Search Google Scholar
    • Export Citation
  • Chen, D., A. Dai, and A. Hall, 2021: The convective-to-total precipitation ratio and the “drizzling” bias in climate models. J. Geophys. Res. Atmos., 126, e2020JD034198, https://doi.org/10.1029/2020JD034198.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, https://doi.org/10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, https://doi.org/10.1175/2008JCLI2306.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Search Google Scholar
    • Export Citation
  • Curtis, P. E., P. Ceppi, and G. Zappa, 2020: Role of the mean state for the Southern Hemispheric jet stream response to CO2 forcing in CMIP6 models. Environ. Res. Lett., 15, 064011, https://doi.org/10.1088/1748-9326/ab8331.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, G. H. Roe, D. S. Battisti, and L. Hahn, 2020: The partitioning of meridional heat transport from the last glacial maximum to CO2 quadrupling in coupled climate models. J. Climate, 33, 41414165, https://doi.org/10.1175/JCLI-D-19-0797.1.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., and P. A. O’Gorman, 2017: Moist formulations of the Eliassen–Palm flux and their connection to the surface westerlies. J. Atmos. Sci., 74, 513530, https://doi.org/10.1175/JAS-D-16-0111.1.

    • Search Google Scholar
    • Export Citation
  • Elbaum, E., C. I. Garfinkel, O. Adam, E. Morin, D. Rostkier-Edelstein, and U. Dayan, 2022: Uncertainty in projected changes in precipitation minus evaporation: Dominant role of dynamic circulation changes and weak role for thermodynamic changes. Geophys. Res. Lett., 49, e2022GL097725, https://doi.org/10.1029/2022GL097725.

    • Search Google Scholar
    • Export Citation
  • Fereday, D., R. Chadwick, J. Knight, and A. A. Scaife, 2018: Atmospheric dynamics is the largest source of uncertainty in future winter European rainfall. J. Climate, 31, 963977, https://doi.org/10.1175/JCLI-D-17-0048.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2008: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci., 65, 10491062, https://doi.org/10.1175/2007JAS2373.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64, 16801693, https://doi.org/10.1175/JAS3913.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, D., S. C. Sherwood, D. Waugh, V. Dixit, M. H. England, Y.-L. Hwong, and O. Geoffroy, 2022: Midlatitude jet position spread linked to atmospheric convective types. J. Climate, 36, 12471265, https://doi.org/10.1175/JCLI-D-21-0992.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and E. Gerber, 2013: Effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 20772095, https://doi.org/10.1175/JCLI-D-12-00301.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., O. Adam, E. Morin, Y. Enzel, E. Elbaum, M. Bartov, D. Rostkier-Edelstein, and U. Dayan, 2020a: The role of zonally averaged climate change in contributing to intermodel spread in CMIP5 predicted local precipitation changes. J. Climate, 33, 11411154, https://doi.org/10.1175/JCLI-D-19-0232.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., I. White, E. P. Gerber, and M. Jucker, 2020b: The impact of SST biases in the tropical east Pacific and Agulhas Current region on atmospheric stationary waves in the Southern Hemisphere. J. Climate, 33, 93519374, https://doi.org/10.1175/JCLI-D-20-0195.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., I. P. White, E. P. Gerber, M. Jucker, and M. Erez, 2020c: The building blocks of Northern Hemisphere wintertime stationary waves. J. Climate, 33, 56115633, https://doi.org/10.1175/JCLI-D-19-0181.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., I. White, E. P. Gerber, S.-W. Son, and M. Jucker, 2023: Stationary waves weaken and delay the near-surface response to stratospheric ozone depletion. J. Climate, 36, 565583, https://doi.org/10.1175/JCLI-D-21-0874.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and S.-W. Son, 2014: Quantifying the summertime response of the austral jet stream and Hadley cell to stratospheric ozone and greenhouse gases. J. Climate, 27, 55385559, https://doi.org/10.1175/JCLI-D-13-00539.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., L. M. Polvani, and D. Ancukiewicz, 2008: Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett., 35, L22707, https://doi.org/10.1029/2008GL035712.

    • Search Google Scholar
    • Export Citation
  • Ghosh, S., O. Lachmy, and Y. Kaspi, 2024: The role of diabatic heating in the midlatitude atmospheric circulation response to climate change. J. Climate, https://doi.org/10.1175/JCLI-D-23-0345.1, in press.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and P. Lionello, 2008: Climate change projections for the Mediterranean region. Global Planet. Change, 63, 90104, https://doi.org/10.1016/j.gloplacha.2007.09.005.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M., B. J. Hoskins, P. J. Valdes, and C. A. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart. J. Roy. Meteor. Soc., 120, 12091230, https://doi.org/10.1002/qj.49712051905.

    • Search Google Scholar
    • Export Citation
  • Harvey, B., P. Cook, L. Shaffrey, and R. Schiemann, 2020: The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos., 125, e2020JD032701, https://doi.org/10.1029/2020JD032701.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1993: Large-scale dynamics and global warming. Bull. Amer. Meteor. Soc., 74, 228242, https://doi.org/10.1175/1520-0477(1993)074<0228:LSDAGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. Frierson, B. J. Soden, and I. M. Held, 2011: Corrigendum: Corrigendum for Held and Soden (2006). J. Climate, 24, 15591560, https://doi.org/10.1175/2010JCLI4045.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J. Geophys. Res., 105, 14 87314 890, https://doi.org/10.1029/2000JD900091.

    • Search Google Scholar
    • Export Citation
  • Jucker, M., and E. Gerber, 2017: Untangling the annual cycle of the tropical tropopause layer with an idealized moist model. J. Climate, 30, 73397358, https://doi.org/10.1175/JCLI-D-17-0127.1.

    • Search Google Scholar
    • Export Citation
  • Kelley, C., M. Ting, R. Seager, and Y. Kushnir, 2012: Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys. Res. Lett., 39, L21703, https://doi.org/10.1029/2012GL053416.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, https://doi.org/10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., and G. K. Vallis, 2012: The relationship between the speed and the latitude of an eddy-driven jet in a stirred barotropic model. J. Atmos. Sci., 69, 32513263, https://doi.org/10.1175/JAS-D-11-0300.1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., S. M. Dean, J. A. Renwick, and G. K. Vallis, 2010: A robust increase in the eddy length scale in the simulation of future climates. Geophys. Res. Lett., 37, L03806, https://doi.org/10.1029/2009GL041615.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., G. K. Vallis, S. M. Dean, and J. A. Renwick, 2011: Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J. Climate, 24, 37643780, https://doi.org/10.1175/2010JCLI3738.1.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, https://doi.org/10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lachmy, O., 2022: The relation between the latitudinal shifts of midlatitude diabatic heating, eddy heat flux, and the eddy-driven jet in CMIP6 models. J. Geophys. Res. Atmos., 127, e2022JD036556, https://doi.org/10.1029/2022JD036556.

    • Search Google Scholar
    • Export Citation
  • Lachmy, O., and Y. Kaspi, 2020: The role of diabatic heating in Ferrel cell dynamics. Geophys. Res. Lett., 47, e2020GL090619, https://doi.org/10.1029/2020GL090619.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and Coauthors, 2022: Atmospheric convection. Atmos.–Ocean, 60, 422476, https://doi.org/10.1080/07055900.2022.2082915.

  • Lorenz, D. J., 2014: Understanding midlatitude jet variability and change using Rossby wave chromatography: Poleward-shifted jets in response to external forcing. J. Atmos. Sci., 71, 23702389, https://doi.org/10.1175/JAS-D-13-0200.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, https://doi.org/10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, https://doi.org/10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McKenna, C. M., and A. C. Maycock, 2021: Sources of uncertainty in multimodel large ensemble projections of the winter North Atlantic oscillation. Geophys. Res. Lett., 48, e2021GL093258, https://doi.org/10.1029/2021GL093258.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part II: Subtropical continent. J. Climate, 26, 754771, https://doi.org/10.1175/JCLI-D-12-00149.1.

    • Search Google Scholar
    • Export Citation
  • Mindlin, J., T. G. Shepherd, C. S. Vera, M. Osman, G. Zappa, R. W. Lee, and K. I. Hodges, 2020: Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing. Climate Dyn., 54, 43994421, https://doi.org/10.1007/s00382-020-05234-1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction. Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

  • O’Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl. Acad. Sci. USA, 107, 19 17619 180, https://doi.org/10.1073/pnas.1011547107.

    • Search Google Scholar
    • Export Citation
  • Okajima, S., H. Nakamura, K. Nishii, T. Miyasaka, A. Kuwano-Yoshida, B. Taguchi, M. Mori, and Y. Kosaka, 2018: Mechanisms for the maintenance of the wintertime basin-scale atmospheric response to decadal SST variability in the North Pacific subarctic frontal zone. J. Climate, 31, 297315, https://doi.org/10.1175/JCLI-D-17-0200.1.

    • Search Google Scholar
    • Export Citation
  • Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2017: Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep., 7, 10783, https://doi.org/10.1038/s41598-017-11285-y.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rio, C., A. D. Del Genio, and F. Hourdin, 2019: Ongoing breakthroughs in convective parameterization. Curr. Climate Change Rep., 5, 95111, https://doi.org/10.1007/s40641-019-00127-w.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, https://doi.org/10.1175/2011JAS3641.1.

    • Search Google Scholar
    • Export Citation
  • Saulière, J., D. J. Brayshaw, B. Hoskins, and M. Blackburn, 2012: Further investigation of the impact of idealized continents and SST distributions on the Northern Hemisphere storm tracks. J. Atmos. Sci., 69, 840856, https://doi.org/10.1175/JAS-D-11-0113.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., T. J. Osborn, Y. Kushnir, I. R. Simpson, J. Nakamura, and H. Liu, 2019: Climate variability and change of Mediterranean-type climates. J. Climate, 32, 28872915, https://doi.org/10.1175/JCLI-D-18-0472.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2019: Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Climate Change Rep., 5, 345357, https://doi.org/10.1007/s40641-019-00145-8.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Z. Tan, 2018: Testing latitudinally dependent explanations of the circulation response to increased CO2 using aquaplanet models. Geophys. Res. Lett., 45, 98619869, https://doi.org/10.1029/2018GL078974.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., P. Barpanda, and A. Donohoe, 2018: A moist static energy framework for zonal-mean storm-track intensity. J. Atmos. Sci., 75, 19791994, https://doi.org/10.1175/JAS-D-17-0183.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., O. Miyawaki, and A. Donohoe, 2022: Stormier Southern Hemisphere induced by topography and ocean circulation. Proc. Natl. Acad. Sci. USA, 119, e2123512119, https://doi.org/10.1073/pnas.2123512119.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., P. C. Siegmund, E. Manzini, and H. Kelder, 2004: A simulation of the separate climate effects of middle-atmospheric and tropospheric CO2 doubling. J. Climate, 17, 23522367, https://doi.org/10.1175/1520-0442(2004)017<2352:ASOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and L. M. Polvani, 2016: Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophys. Res. Lett., 43, 28962903, https://doi.org/10.1002/2016GL067989.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. G. Shepherd, P. Hitchcock, and J. F. Scinocca, 2013: Southern Annular Mode dynamics in observations and models. Part II: Eddy feedbacks. J. Climate, 26, 52205241, https://doi.org/10.1175/JCLI-D-12-00495.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., P. Hitchcock, R. Seager, Y. Wu, and P. Callaghan, 2018: The downward influence of uncertainty in the Northern Hemisphere stratospheric polar vortex response to climate change. J. Climate, 31, 63716391, https://doi.org/10.1175/JCLI-D-18-0041.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, B. A., C. S. Jackson, and B. M. Wagman, 2019: Effect of tropical nonconvective condensation on uncertainty in modeled projections of rainfall. J. Climate, 32, 65716588, https://doi.org/10.1175/JCLI-D-18-0833.1.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810.

    • Search Google Scholar
    • Export Citation
  • Tan, Z., and T. A. Shaw, 2020: Quantifying the impact of wind and surface humidity-induced surface heat exchange on the circulation shift in response to increased CO2. Geophys. Res. Lett., 47, e2020GL088053, https://doi.org/10.1029/2020GL088053.

    • Search Google Scholar
    • Export Citation
  • Tan, Z., O. Lachmy, and T. A. Shaw, 2019: The sensitivity of the jet stream response to climate change to radiative assumptions. J. Adv. Model. Earth Syst., 11, 934956, https://doi.org/10.1029/2018MS001492.

    • Search Google Scholar
    • Export Citation
  • Tuel, A., and E. A. B. Eltahir, 2020: Why is the Mediterranean a climate change hot spot? J. Climate, 33, 58295843, https://doi.org/10.1175/JCLI-D-19-0910.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., N. Albern, and G. Papavasileiou, 2019: The atmospheric pathway of the cloud-radiative impact on the circulation response to global warming: Important and uncertain. J. Climate, 32, 30513067, https://doi.org/10.1175/JCLI-D-18-0810.1.

    • Search Google Scholar
    • Export Citation
  • White, I. P., C. I. Garfinkel, E. P. Gerber, M. Jucker, P. Hitchcock, and J. Rao, 2020: The generic nature of the tropospheric response to sudden stratospheric warmings. J. Climate, 33, 55895610, https://doi.org/10.1175/JCLI-D-19-0697.1.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C., R. H. White, and X. J. Levine, 2019: Northern Hemisphere stationary waves in a changing climate. Curr. Climate Change Rep., 5, 372389, https://doi.org/10.1007/s40641-019-00147-6.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1957: Definition of the tropopause. Bull. WMO, 6, 136137.

  • Wu, Y., R. Seager, M. Ting, N. Naik, and T. A. Shaw, 2012: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate, 25, 28622879, https://doi.org/10.1175/JCLI-D-11-00284.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., and T. G. Shepherd, 2017: Storylines of atmospheric circulation change for European regional climate impact assessment. J. Climate, 30, 65616577, https://doi.org/10.1175/JCLI-D-16-0807.1.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., B. J. Hoskins, and T. G. Shepherd, 2015: The dependence of wintertime Mediterranean precipitation on the atmospheric circulation response to climate change. Environ. Res. Lett., 10, 104012, https://doi.org/10.1088/1748-9326/10/10/104012.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. He, J. Zhang, I. Polyakov, R. Gerdes, J. Inoue, and P. Wu, 2013: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Climate Change, 3, 4751, https://doi.org/10.1038/nclimate1631.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 581 581 33
Full Text Views 228 228 19
PDF Downloads 277 277 22