Increased Extreme Precipitation in May over Southwestern Xinjiang in Relation to Eurasian Snow Cover in Recent Years

Ping Chen aInstitute of Desert Meteorology, China Meteorological Administration, Urumqi, China
bKey Laboratory of Tree-ring Physical and Chemical Research, China Meteorological Administration, Urumqi, China
cXinjiang Key Laboratory of Tree-Ring Ecology, Urumqi, China

Search for other papers by Ping Chen in
Current site
Google Scholar
PubMed
Close
,
Junqiang Yao aInstitute of Desert Meteorology, China Meteorological Administration, Urumqi, China
bKey Laboratory of Tree-ring Physical and Chemical Research, China Meteorological Administration, Urumqi, China
cXinjiang Key Laboratory of Tree-Ring Ecology, Urumqi, China

Search for other papers by Junqiang Yao in
Current site
Google Scholar
PubMed
Close
,
Weiyi Mao aInstitute of Desert Meteorology, China Meteorological Administration, Urumqi, China
dXinjiang Key Laboratory of Desert Meteorology and Sandstorm, Urumqi, China

Search for other papers by Weiyi Mao in
Current site
Google Scholar
PubMed
Close
,
Liyun Ma aInstitute of Desert Meteorology, China Meteorological Administration, Urumqi, China

Search for other papers by Liyun Ma in
Current site
Google Scholar
PubMed
Close
,
Jing Chen aInstitute of Desert Meteorology, China Meteorological Administration, Urumqi, China
bKey Laboratory of Tree-ring Physical and Chemical Research, China Meteorological Administration, Urumqi, China
cXinjiang Key Laboratory of Tree-Ring Ecology, Urumqi, China

Search for other papers by Jing Chen in
Current site
Google Scholar
PubMed
Close
,
Tuoliewubieke Dilinuer aInstitute of Desert Meteorology, China Meteorological Administration, Urumqi, China
bKey Laboratory of Tree-ring Physical and Chemical Research, China Meteorological Administration, Urumqi, China
cXinjiang Key Laboratory of Tree-Ring Ecology, Urumqi, China

Search for other papers by Tuoliewubieke Dilinuer in
Current site
Google Scholar
PubMed
Close
, and
Shujuan Li aInstitute of Desert Meteorology, China Meteorological Administration, Urumqi, China
bKey Laboratory of Tree-ring Physical and Chemical Research, China Meteorological Administration, Urumqi, China
cXinjiang Key Laboratory of Tree-Ring Ecology, Urumqi, China

Search for other papers by Shujuan Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the interdecadal variations of extreme precipitation in May over southwestern Xinjiang (SWX) and related mechanisms were investigated. The extreme precipitation in May over SWX exhibited a decadal shift in the 1990s (negative phase during 1970–86 and positive phase during 2003–18). The decadal shift corresponded to strengthened moist airflow from the Indian Ocean and an anomalous cyclone over SWX during 2003–18. It is found that the interdecadal change of the wave trains in Eurasia might account for the differences in atmospheric circulation between the above two periods. Further analyses reveal that spring snow cover over Eurasia is closely linked to extreme precipitation over SWX during 2003–18. Increased snow cover in western Europe (WE) from February to March is accompanied by more snowmelt. This resulted in less local snow cover and lower albedo, leading to warm temperatures over WE in May. The changes in temperatures increase the local 1000–500-hPa thickness over WE. These factors provide favorable conditions for the enhancement of the Eurasian wave trains, which significantly influence extreme precipitation over SWX. On the other hand, corresponding to decreased albedo caused by the reduction of snow cover in northern Eurasia (NE) in May, anomalous surface warming occurs over NE. The anomalous warming results in positive geopotential height anomalies that intensify the meridional geopotential height gradient over Eurasia and cause an acceleration of the westerly jet in May. Anomalous upper-level divergence in SWX induced by the enhanced westerly jet provides a favorable dynamical condition for increased extreme precipitation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junqiang Yao, yaojq1987@126.com

Abstract

In this study, the interdecadal variations of extreme precipitation in May over southwestern Xinjiang (SWX) and related mechanisms were investigated. The extreme precipitation in May over SWX exhibited a decadal shift in the 1990s (negative phase during 1970–86 and positive phase during 2003–18). The decadal shift corresponded to strengthened moist airflow from the Indian Ocean and an anomalous cyclone over SWX during 2003–18. It is found that the interdecadal change of the wave trains in Eurasia might account for the differences in atmospheric circulation between the above two periods. Further analyses reveal that spring snow cover over Eurasia is closely linked to extreme precipitation over SWX during 2003–18. Increased snow cover in western Europe (WE) from February to March is accompanied by more snowmelt. This resulted in less local snow cover and lower albedo, leading to warm temperatures over WE in May. The changes in temperatures increase the local 1000–500-hPa thickness over WE. These factors provide favorable conditions for the enhancement of the Eurasian wave trains, which significantly influence extreme precipitation over SWX. On the other hand, corresponding to decreased albedo caused by the reduction of snow cover in northern Eurasia (NE) in May, anomalous surface warming occurs over NE. The anomalous warming results in positive geopotential height anomalies that intensify the meridional geopotential height gradient over Eurasia and cause an acceleration of the westerly jet in May. Anomalous upper-level divergence in SWX induced by the enhanced westerly jet provides a favorable dynamical condition for increased extreme precipitation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junqiang Yao, yaojq1987@126.com

Supplementary Materials

    • Supplemental Materials (PDF 3.9167 MB)
Save
  • Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661686, https://doi.org/10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2012: Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol., 108, 345354, https://doi.org/10.1007/s00704-011-0537-2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2008: Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev., 27, 351364, https://doi.org/10.1016/j.quascirev.2007.10.017.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2010: Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev., 29, 10551068, https://doi.org/10.1016/j.quascirev.2010.01.005.

    • Search Google Scholar
    • Export Citation
  • Chen, F., W. Huang, L. Jin, J. Chen, and J. Wang, 2011: Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China Earth Sci., 54, 18121821, https://doi.org/10.1007/s11430-011-4333-8.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2019: Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci. Rev., 192, 337354, https://doi.org/10.1016/j.earscirev.2019.03.005.

    • Search Google Scholar
    • Export Citation
  • Chen, H., D. Qi, and B. Xu, 2013: Influence of snow melt anomaly over the mid-high latitudes of the Eurasian continent on summer low temperatures in northeastern China. Chin. J. Atmos. Sci., 37, 13371347, https://doi.org/10.3878/j.issn.1006-9895.2013.12194.

    • Search Google Scholar
    • Export Citation
  • Chen, J., W. Huang, S. Feng, Q. Zhang, X. Kuang, J. Chen, and F. Chen, 2021: The modulation of westerlies-monsoon interaction on climate over the monsoon boundary zone in East Asia. Int. J. Climatol., 41, E3049E3064, https://doi.org/10.1002/joc.6903.

    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, W. Chen, K. Hu, and B. Yu, 2020: Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia. Climate Dyn., 54, 51115126, https://doi.org/10.1007/s00382-020-05274-7.

    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Wang, Z. Hu, Q. Zhou, and Q. Hu, 2018: Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901–2013. J. Geogr. Sci., 28, 13411368, https://doi.org/10.1007/s11442-018-1529-2.

    • Search Google Scholar
    • Export Citation
  • Chen, X., X. Jia, R. Wu, and Q. Qian, 2022: Interannual variation and prediction of wintertime precipitation in Central Asia. J. Climate, 35, 47714789, https://doi.org/10.1175/JCLI-D-21-0951.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., R. Wu, Y. Zhao, and Z. Wang, 2022: Different responses of Central Asian precipitation to strong and weak El Niño events. J. Climate, 35, 14971514, https://doi.org/10.1175/JCLI-D-21-0238.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., J. Zhang, Q. Ma, S. Li, and M. Niu, 2023: Multi-timescale modulation of North Pacific Victoria mode on Central Asian vortices causing heavy snowfall. Climate Dyn., 60, 687704, https://doi.org/10.1007/s00382-022-06350-w.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689706, https://doi.org/10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 1999: Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res., 104, 19 38319 397, https://doi.org/10.1029/1999JD900222.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Engel, J., E. Herrmann, and T. Gasser, 1994: An iterative bandwidth selector for kernel estimation of densities and their derivatives. J. Nonparametric Stat., 4, 2134, https://doi.org/10.1080/10485259408832598.

    • Search Google Scholar
    • Export Citation
  • Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data, 7, 137142, https://doi.org/10.5194/essd-7-137-2015.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., Z. Wen, Y. Tan, and X. Li, 2020: Plausible causes of the interdecadal change of the North Pacific teleconnection pattern in boreal spring around the late 1990s. Climate Dyn., 55, 14271442, https://doi.org/10.1007/s00382-020-05334-y.

    • Search Google Scholar
    • Export Citation
  • Halder, S., and P. A. Dirmeyer, 2017: Relation of Eurasian snow cover and Indian summer monsoon rainfall: Importance of the delayed hydrological effect. J. Climate, 30, 12731289, https://doi.org/10.1175/JCLI-D-16-0033.1.

    • Search Google Scholar
    • Export Citation
  • Han, T., H. Wang, X. Hao, and S. Li, 2019: Seasonal prediction of midsummer extreme precipitation days over northeast China. J. Appl. Meteor. Climatol., 58, 20332048, https://doi.org/10.1175/JAMC-D-18-0253.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2023a: ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 3 January 2023, https://doi.org/10.24381/cds.f17050d7.

  • Hersbach, H., and Coauthors, 2023b: ERA5 monthly averaged data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 3 January 2023, https://doi.org/10.24381/cds.6860a573.

  • Hu, Z., Q. Zhou, X. Chen, C. Qian, S. Wang, and J. Li, 2017: Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol., 37, 157170, https://doi.org/10.1002/joc.4988.

    • Search Google Scholar
    • Export Citation
  • Huang, W., F. Chen, S. Feng, J. Chen, and X. Zhang, 2013: Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull., 58, 39623968, https://doi.org/10.1007/s11434-013-5970-4.

    • Search Google Scholar
    • Export Citation
  • Huang, W., S. Feng, J. Chen, and F. Chen, 2015: Physical mechanisms of summer precipitation variations in the Tarim basin in northwestern China. J. Climate, 28, 35793591, https://doi.org/10.1175/JCLI-D-14-00395.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., T. Liu, and Y. H. Zhang, 2012: Features of a regional rainstorm in midsummer of 2010 in western Xinjiang. J. Arid Meteor., 30, 615622.

    • Search Google Scholar
    • Export Citation
  • Jia, X., D. R. Cao, J. W. Ge, and M. Wang, 2018: Interdecadal change of the impact of Eurasian snow on spring precipitation over southern China. J. Geophys. Res. Atmos., 123, 10 09210 108, https://doi.org/10.1029/2018JD028612.

    • Search Google Scholar
    • Export Citation
  • Jiang, F.-Q., R.-J. Hu, S.-P. Wang, Y.-W. Zhang, and L. Tong, 2013: Trends of precipitation extremes during 1960–2008 in Xinjiang, the northwest China. Theor. Appl. Climatol., 111, 133148, https://doi.org/10.1007/s00704-012-0657-3.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., and T. Zhou, 2021a: Human‐induced rainfall reduction in drought‐prone northern Central Asia. Geophys. Res. Lett., 48, e2020GL092156, https://doi.org/10.1029/2020GL092156.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., T. Zhou, X. Chen, and B. Wu, 2021b: Central Asian precipitation shaped by the tropical Pacific decadal variability and the Atlantic multidecadal variability. J. Climate, 34, 75417553, https://doi.org/10.1175/JCLI-D-20-0905.1.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Charles Griffin, 202 pp.

  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. Van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30, 1241, https://doi.org/10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Lee, Y. G., C.-H. Ho, J. Kim, and J. Kim, 2013: Potential impacts of northeastern Eurasian snow cover on generation of dust storms in northwestern China during spring. Climate Dyn., 41, 721733, https://doi.org/10.1007/s00382-012-1522-x.

    • Search Google Scholar
    • Export Citation
  • Lin, H., Q. You, Y. Zhang, Y. Jiao, and K. Fraedrich, 2016: Impact of large-scale circulation on the water vapour balance of the Tibetan Plateau in summer. Int. J. Climatol., 36, 42134221, https://doi.org/10.1002/joc.4626.

    • Search Google Scholar
    • Export Citation
  • Lv, X., Y. Zhou, X. Yu, B. Yu, and X. Wang, 2021: Temporal and spatial variation characteristics of rainstorm flood disaster loss in Xinjiang during 1961–2019. Desert Oasis Meteor., 15, 4249, https://doi.org/10.12057/j.issn.1002-0799.2021.04.006.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric test against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett., 34, L16706, https://doi.org/10.1029/2007GL030078.

    • Search Google Scholar
    • Export Citation
  • Meng, L., Y. Zhao, and M. Li, 2021: Effects of whole SST anomaly in the tropical Indian Ocean on summer rainfall over central Asia. Front. Earth Sci., 9, 738066, https://doi.org/10.3389/feart.2021.738066.

    • Search Google Scholar
    • Export Citation
  • Mu, S., and G. Zhou, 2010: Relationship between winter northern Eurasian fresh snow extent and summer climate anomalies in China. Chin. J. Atmos. Sci., 34, 213226, https://doi.org/10.3878/j.issn.1006-9895.2010.01.20.

    • Search Google Scholar
    • Export Citation
  • Muñoz, S. J., 2019: ERA5-land monthly averaged data from 1981 to present Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 3 January 2023, https://doi.org/10.24381/cds.68d2bb3.

  • Ning, G., M. Luo, Q. Zhang, S. Wang, Z. Liu, Y. Yang, S. Wu, and Z. Zeng, 2021: Understanding the mechanisms of summer extreme precipitation events in Xinjiang of arid northwest China. J. Geophys. Res. Atmos., 126, e2020JD034111, https://doi.org/10.1029/2020JD034111.

    • Search Google Scholar
    • Export Citation
  • Peng, D., T. Zhou, L. Zhang, and B. Wu, 2018: Human contribution to the increasing summer precipitation in central Asia from 1961 to 2013. J. Climate, 31, 80058021, https://doi.org/10.1175/JCLI-D-17-0843.1.

    • Search Google Scholar
    • Export Citation
  • Peng, D., T. Zhou, and L. Zhang, 2020: Moisture sources associated with precipitation during dry and wet seasons over central Asia. J. Climate, 33, 10 75510 771, https://doi.org/10.1175/JCLI-D-20-0029.1.

    • Search Google Scholar
    • Export Citation
  • Qu, L., Y. Zhao, Y. Zhou, and L. Meng, 2023: Why has the summer rainfall increased prominently in the West Tarim Basin of northwest China since 2010? Atmos. Res., 284, 106620, https://doi.org/10.1016/j.atmosres.2023.106620.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Sang, Y., H.-L. Ren, Y. Deng, X. F. Xu, X. Shi, and S. Zhao, 2022: Impacts of late-spring North Eurasian soil moisture variation on summer rainfall anomalies in northern East Asia. Climate Dyn., 58, 14951508, https://doi.org/10.1007/s00382-021-05973-9.

    • Search Google Scholar
    • Export Citation
  • Shi, Y., Y. Shen, E. Kang, D. Li, Y. Ding, G. Zhang, and R. Hu, 2007: Recent and future climate change in northwest China. Climatic Change, 80, 379393, https://doi.org/10.1007/s10584-006-9121-7.

    • Search Google Scholar
    • Export Citation
  • Shi, Y. G., and Z. B. Sun, 2008: Climate characteristics of water vapor transportation and its variation over Xinjiang. Plateau Meteor., 27, 310319, https://doi.org/10.3724/SP.J.1047.2008.00014.

    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. J. Wang, 2018: Interannual variation of the spring and summer precipitation over the Three River source region in China and the associated regimes. J. Climate, 31, 74417457, https://doi.org/10.1175/JCLI-D-17-0680.1.

    • Search Google Scholar
    • Export Citation
  • Sun, B., Y. Zhu, and H. Wang, 2011: The recent interdecadal and interannual variation of water vapor transport over eastern China. Adv. Atmos. Sci., 28, 10391048, https://doi.org/10.1007/s00376-010-0093-1.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., H. Chen, S. Zhu, J. Zhang, and J. Wei, 2021: Influence of the Eurasian spring snowmelt on summer land surface warming over northeast Asia and its associated mechanism. J. Climate, 34, 48514869, https://doi.org/10.1175/JCLI-D-20-0756.1.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., B. Wang, F. Huang, Q. Ding, and J.-Y. Lee, 2012: Interdecadal change of the boreal summer circumglobal teleconnection (1958–2010). Geophys. Res. Lett., 39, L12704, https://doi.org/10.1029/2012GL052371.

    • Search Google Scholar
    • Export Citation
  • Wang, H., T. Gao, and L. Xie, 2019: Extreme precipitation events during 1960–2011 for the northwest China: Space-time changes and possible causes. Theor. Appl. Climatol., 137, 977995, https://doi.org/10.1007/s00704-018-2645-8.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Zhang, L. Chen, and D. Li, 2022: Relationship between summer extreme precipitation anomaly in Central Asia and surface sensible heat variation on the central-eastern Tibetan Plateau. Climate Dyn., 59, 685700, https://doi.org/10.1007/s00382-022-06148-w.

    • Search Google Scholar
    • Export Citation
  • Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road pattern. J. Climate, 30, 99159932, https://doi.org/10.1175/JCLI-D-17-0340.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., J. Huang, G. Huang, F. Luo, Y. Ren, and Y. He, 2022: Enhanced impacts of Indian Ocean sea surface temperature on the dry/wet variations over northwest China. J. Geophys. Res. Atmos., 127, e2022JD036533, https://doi.org/10.1029/2022JD036533.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Lin, and T. Zhou, 2016: Interdecadal circumglobal teleconnection pattern during boreal summer. Atmos. Sci. Lett., 17, 446452, https://doi.org/10.1002/asl.677.

    • Search Google Scholar
    • Export Citation
  • Xie, T., W. Huang, S. Chang, F. Zheng, J. Chen, J. Chen, and F. Chen, 2021: Moisture sources of extreme precipitation events in arid Central Asia and their relationship with atmospheric circulation. Int. J. Climatol., 41, E271E282, https://doi.org/10.1002/joc.6683.

    • Search Google Scholar
    • Export Citation
  • Xie, T., W. Huang, S. Feng, T. Wang, Y. Liu, J. Chen, and F. Chen, 2022: Mechanism of winter precipitation variations in the southern arid Central Asia. Int. J. Climatol., 42, 44774490, https://doi.org/10.1002/joc.7480.

    • Search Google Scholar
    • Export Citation
  • Xu, B., H. Chen, C. Gao, G. Zeng, and Q. Huang, 2021: Abnormal change in spring snowmelt over Eurasia and its linkage to the East Asian summer monsoon: The hydrological effect of snow cover. Front. Earth Sci., 8, 594656, https://doi.org/10.3389/feart.2020.594656.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2011: Snow–atmosphere coupling strength in a global atmospheric model. Geophys. Res. Lett., 38, L13401, https://doi.org/10.1029/2011GL048049.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2013a: Snow–atmosphere coupling strength. Part I: Effect of model biases. J. Hydrometeor., 14, 389403, https://doi.org/10.1175/JHM-D-11-0102.1.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2013b: Snow–atmosphere coupling strength. Part II: Albedo effect versus hydrological effect. J. Hydrometeor., 14, 404418, https://doi.org/10.1175/JHM-D-11-0103.1.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, and W. Chen, 2019: The British–Baikal Corridor: A teleconnection pattern along the summertime polar front jet over Eurasia. J. Climate, 32, 877896, https://doi.org/10.1175/JCLI-D-18-0343.1.

    • Search Google Scholar
    • Export Citation
  • Xu, X. D., Y. J. Wang, W. S. Wei, T. Zhao, and H. X. Xu, 2014: Summertime precipitation process and atmospheric water cycle over Tarim Basin under the specific large terrain background. Desert Oasis Meteor., 8, 111, https://doi.org/10.3969/j.jssn.1002-0799.2014.02.001.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., F. de Sales, W.-P. Li, C. R. Mechoso, C. A. Nobre, and H.-M. Juang, 2006: Role of land surface processes in South American monsoon development. J. Climate, 19, 741762, https://doi.org/10.1175/JCLI3667.1.

    • Search Google Scholar
    • Export Citation
  • Yao, J., Y. Chen, J. Chen, Y. Zhao, D. Tuoliewubieke, J. Li, L. Yang, and W. Mao, 2021: Intensification of extreme precipitation in arid Central Asia. J. Hydrol., 598, 125760, https://doi.org/10.1016/j.jhydrol.2020.125760.

    • Search Google Scholar
    • Export Citation
  • Ye, K., R. Wu, and Y. Liu, 2015: Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s. J. Geophys. Res. Atmos., 120, 27382753, https://doi.org/10.1002/2015JD023148.

    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., J.-G. Jhun, R. Lu, and B. Wang, 2010: Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asian summer monsoon. J. Geophys. Res., 115, D22113, https://doi.org/10.1029/2010JD013996.

    • Search Google Scholar
    • Export Citation
  • Yin, Z., and H. Wang, 2018: The strengthening relationship between Eurasian snow cover and December haze days in central North China after the mid-1990s. Atmos. Chem. Phys., 18, 47534763, https://doi.org/10.5194/acp-18-4753-2018.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Q. Ma, H. Chen, S. Zhao, and Z. Chen, 2021: Increasing warm-season precipitation in Asian drylands and response to reducing spring snow cover over the Tibetan Plateau. J. Climate, 34, 31293144, https://doi.org/10.1175/JCLI-D-20-0479.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. L., N. Li, H. Qing, J. G. Li, J. Liu, W. Liu, and L. B. N. Mei, 2016: The observational analysis and water vapor characteristics of a rainstorm process in Xinjiang. Torrential Rain Disasters, 35, 537545, https://doi.org/10.3969/j.issn.1004-9045.2016.06.006.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Zhang, and Z. Zuo, 2017: Impact of Eurasian spring snow decrement on East Asian summer precipitation. J. Climate, 30, 34213437, https://doi.org/10.1175/JCLI-D-16-0214.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., L. Meng, Y. Zhao, X. Yang, and A. Huang, 2022: The influence of the Tibetan Plateau monsoon on summer precipitation in Central Asia. Front. Earth Sci., 10, 771104, https://doi.org/10.3389/feart.2022.771104.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., T. Wang, Y. Feng, X. Li, and G. Krinner, 2021: An emerging impact of Eurasian spring snow cover on summer rainfall in eastern China. Environ. Res. Lett., 16, 054012, https://doi.org/10.1088/1748-9326/abf688.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Y. Chen, G. Fang, Y. Li, Z. Li, F. Wang, and Z. Xia, 2022: Observed changes in extreme precipitation over the Tienshan Mountains and associated large-scale climate teleconnections. J. Hydrol., 606, 127457, https://doi.org/10.1016/j.jhydrol.2022.127457.

    • Search Google Scholar
    • Export Citation
  • Zhao, S., J. Zhang, Y. Du, R. Ji, and M. Niu, 2022: Modulation of coupled modes of Tibetan Plateau heating and Indian summer monsoon on summer rainfall over central Asia. J. Climate, 35, 14411458, https://doi.org/10.1175/JCLI-D-20-0813.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., A. Huang, Y. Zhou, D. Huang, Q. Yang, Y. Ma, M. Li, and G. Wei, 2014: Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China. J. Climate, 27, 47214732, https://doi.org/10.1175/JCLI-D-13-00456.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., B. Wang, and W. Qian, 2008: Why do dust storms decrease in northern China concurrently with the recent global warming? Geophys. Res. Lett., 35, L18702, https://doi.org/10.1029/2008GL034886.

    • Search Google Scholar
    • Export Citation
  • Zhu, K., X. Guan, J. Huang, J. Wang, S. Guo, and C. Cao, 2021: Precipitation over semi-arid regions of North Hemisphere affected by Atlantic multidecadal oscillation. Atmos. Res., 262, 105801, https://doi.org/10.1016/j.atmosres.2021.105801.

    • Search Google Scholar
    • Export Citation
  • Zou, S., J. Abuduwaili, W. Duan, J. Ding, P. De Maeyer, T. Van De Voorde, and L. Ma, 2021: Attribution of changes in the trend and temporal non-uniformity of extreme precipitation events in Central Asia. Sci. Rep., 11, 15032, https://doi.org/10.1038/s41598-021-94486-w.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z., S. Yang, W. Wang, A. Kumar, Y. Xue, and R. Zhang, 2011: Relationship between anomalies of Eurasian snow and southern China rainfall in winter. Environ. Res. Lett., 6, 045402, https://doi.org/10.1088/1748-9326/6/4/045402.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 276 276 98
Full Text Views 94 94 21
PDF Downloads 107 107 27