Sea Ice Loss, Water Vapor Increases, and Their Interactions with Atmospheric Energy Transport in Driving Seasonal Polar Amplification

Po-Chun Chung aDepartment of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, California

Search for other papers by Po-Chun Chung in
Current site
Google Scholar
PubMed
Close
and
Nicole Feldl aDepartment of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, California

Search for other papers by Nicole Feldl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ice–albedo feedback associated with sea ice loss contributes to polar amplification, while the water vapor feedback contributes to tropical amplification of surface warming. However, these feedbacks are not independent of atmospheric energy transport, raising the possibility of complex interactions that may obscure the drivers of polar amplification, in particular its manifestation across the seasonal cycle. Here, we apply a radiative transfer hierarchy to an idealized aquaplanet global climate model coupled to a thermodynamic sea ice model. The climate responses and radiative feedbacks are decomposed into the contributions from sea ice loss, including both retreat and thinning, and the radiative effect of water vapor changes. We find that summer sea ice retreat causes winter polar amplification through ocean heat uptake and release, and the resulting decrease in dry energy transport weakens the magnitude of warming. Moreover, sea ice thinning is found to suppress summer warming and enhance winter warming, additionally contributing to winter amplification. The water vapor radiative effect produces seasonally symmetric polar warming via offsetting effects: enhanced moisture in the summer hemisphere induces the summer water vapor feedback and simultaneously strengthens the winter latent energy transport in the winter hemisphere by increasing the meridional moisture gradient. These results reveal the importance of changes in atmospheric energy transport induced by sea ice retreat and increased water vapor to seasonal polar amplification, elucidating the interactions among these physical processes.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Po-Chun Chung, pochung@ucsc.edu

Abstract

The ice–albedo feedback associated with sea ice loss contributes to polar amplification, while the water vapor feedback contributes to tropical amplification of surface warming. However, these feedbacks are not independent of atmospheric energy transport, raising the possibility of complex interactions that may obscure the drivers of polar amplification, in particular its manifestation across the seasonal cycle. Here, we apply a radiative transfer hierarchy to an idealized aquaplanet global climate model coupled to a thermodynamic sea ice model. The climate responses and radiative feedbacks are decomposed into the contributions from sea ice loss, including both retreat and thinning, and the radiative effect of water vapor changes. We find that summer sea ice retreat causes winter polar amplification through ocean heat uptake and release, and the resulting decrease in dry energy transport weakens the magnitude of warming. Moreover, sea ice thinning is found to suppress summer warming and enhance winter warming, additionally contributing to winter amplification. The water vapor radiative effect produces seasonally symmetric polar warming via offsetting effects: enhanced moisture in the summer hemisphere induces the summer water vapor feedback and simultaneously strengthens the winter latent energy transport in the winter hemisphere by increasing the meridional moisture gradient. These results reveal the importance of changes in atmospheric energy transport induced by sea ice retreat and increased water vapor to seasonal polar amplification, elucidating the interactions among these physical processes.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Po-Chun Chung, pochung@ucsc.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.2270 MB)
Save
  • Audette, A., and Coauthors, 2021: Opposite responses of the dry and moist eddy heat transport into the Arctic in the PAMIP experiments. Geophys. Res. Lett., 48, e2020GL089990, https://doi.org/10.1029/2020GL089990.

    • Search Google Scholar
    • Export Citation
  • Baggett, C., and S. Lee, 2017: An identification of the mechanisms that lead to Arctic warming during planetary-scale and synoptic-scale wave life cycles. J. Atmos. Sci., 74, 18591877, https://doi.org/10.1175/JAS-D-16-0156.1.

    • Search Google Scholar
    • Export Citation
  • Beer, E., and I. Eisenman, 2022: Revisiting the role of the water vapor and lapse rate feedbacks in the Arctic amplification of climate change. J. Climate, 35, 29752988, https://doi.org/10.1175/JCLI-D-21-0814.1.

    • Search Google Scholar
    • Export Citation
  • Boeke, R. C., and P. C. Taylor, 2018: Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming. Nat. Commun., 9, 5017, https://doi.org/10.1038/s41467-018-07061-9.

    • Search Google Scholar
    • Export Citation
  • Boeke, R. C., P. C. Taylor, and S. A. Sejas, 2021: On the nature of the Arctic’s positive lapse-rate feedback. Geophys. Res. Lett., 48, e2020GL091109, https://doi.org/10.1029/2020GL091109.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619, https://doi.org/10.1111/j.2153-3490.1969.tb00466.x.

    • Search Google Scholar
    • Export Citation
  • Dai, A., D. Luo, M. Song, and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, https://doi.org/10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Dimitrelos, A., R. Caballero, and A. M. L. Ekman, 2023: Controls on surface warming by winter Arctic moist intrusions in idealized large-eddy simulations. J. Climate, 36, 12871300, https://doi.org/10.1175/JCLI-D-22-0174.1.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, G. H. Roe, D. S. Battisti, and L. Hahn, 2020: The partitioning of meridional heat transport from the last glacial maximum to CO2 quadrupling in coupled climate models. J. Climate, 33, 41414165, https://doi.org/10.1175/JCLI-D-19-0797.1.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., M. Biasutti, and A. H. Sobel, 2012: Projected changes in the seasonal cycle of surface temperature. J. Climate, 25, 63596374, https://doi.org/10.1175/JCLI-D-11-00741.1.

    • Search Google Scholar
    • Export Citation
  • England, M. R., I. Eisenman, and T. J. W. Wagner, 2022: Spurious climate impacts in coupled sea ice loss simulations. J. Climate, 35, 74017411, https://doi.org/10.1175/JCLI-D-21-0647.1.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., and G. H. Roe, 2013: The nonlinear and nonlocal nature of climate feedbacks. J. Climate, 26, 82898304, https://doi.org/10.1175/JCLI-D-12-00631.1.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., and T. M. Merlis, 2021: Polar amplification in idealized climates: The role of ice, moisture, and seasons. Geophys. Res. Lett., 48, e2021GL094130, https://doi.org/10.1029/2021GL094130.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., S. Bordoni, and T. M. Merlis, 2017: Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport. J. Climate, 30, 189201, https://doi.org/10.1175/JCLI-D-16-0324.1.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., S. Po-Chedley, H. K. A. Singh, S. Hay, and P. J. Kushner, 2020: Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback. npj Climate Atmos. Sci., 3, 41, https://doi.org/10.1038/s41612-020-00146-7.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64, 16801693, https://doi.org/10.1175/JAS3913.1.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and Coauthors, 2018: Quantifying climate feedbacks in polar regions. Nat. Commun., 9, 1919, https://doi.org/10.1038/s41467-018-04173-0.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Burtu, 2016: Arctic amplification enhanced by latent energy transport of atmospheric planetary waves. Quart. J. Roy. Meteor. Soc., 142, 20462054, https://doi.org/10.1002/qj.2802.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and P. L. Langen, 2019: On the role of the atmospheric energy transport in 2 × CO2–induced polar amplification in CESM1. J. Climate, 32, 39413956, https://doi.org/10.1175/JCLI-D-18-0546.1.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., P. L. Langen, and T. Mauritsen, 2014: Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J. Climate, 27, 44334450, https://doi.org/10.1175/JCLI-D-13-00551.1.

    • Search Google Scholar
    • Export Citation
  • Hahn, L. C., K. C. Armour, M. D. Zelinka, C. M. Bitz, and A. Donohoe, 2021: Contributions to polar amplification in CMIP5 and CMIP6 models. Front. Earth Sci., 9, 710036, https://doi.org/10.3389/feart.2021.710036.

    • Search Google Scholar
    • Export Citation
  • Hahn, L. C., K. C. Armour, D. S. Battisti, I. Eisenman, and C. M. Bitz, 2022: Seasonality in Arctic warming driven by sea ice effective heat capacity. J. Climate, 35, 16291642, https://doi.org/10.1175/JCLI-D-21-0626.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.

  • Henry, M., T. M. Merlis, N. J. Lutsko, and B. E. J. Rose, 2021: Decomposing the drivers of polar amplification with a single-column model. J. Climate, 34, 23552365, https://doi.org/10.1175/JCLI-D-20-0178.1.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, https://doi.org/10.1007/s00382-003-0332-6.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and J. E. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, https://doi.org/10.1029/2011GL048546.

    • Search Google Scholar
    • Export Citation
  • Jenkins, M., and A. Dai, 2021: The impact of sea-ice loss on Arctic climate feedbacks and their role for Arctic amplification. Geophys. Res. Lett., 48, e2021GL094599, https://doi.org/10.1029/2021GL094599.

    • Search Google Scholar
    • Export Citation
  • Jucker, M., and E. P. Gerber, 2017: Untangling the annual cycle of the tropical tropopause layer with an idealized moist model. J. Climate, 30, 73397358, https://doi.org/10.1175/JCLI-D-17-0127.1.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Z. S., and N. Feldl, 2022: Causes of the Arctic’s lower-tropospheric warming structure. J. Climate, 35, 19832002, https://doi.org/10.1175/JCLI-D-21-0298.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, https://doi.org/10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85, 55295554, https://doi.org/10.1029/JC085iC10p05529.

    • Search Google Scholar
    • Export Citation
  • McCrystall, M. R., J. Stroeve, M. Serreze, B. C. Forbes, and J. A. Screen, 2021: New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun., 12, 6765, https://doi.org/10.1038/s41467-021-27031-y.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., K. L. Smith, and L. M. Polvani, 2021: Arctic amplification of climate change: A review of underlying mechanisms. Environ. Res. Lett., 16, 093003, https://doi.org/10.1088/1748-9326/ac1c29.

    • Search Google Scholar
    • Export Citation
  • Russotto, R. D., and M. Biasutti, 2020: Polar amplification as an inherent response of a circulating atmosphere: Results from the TRACMIP aquaplanets. Geophys. Res. Lett., 47, e2019GL086771, https://doi.org/10.1029/2019GL086771.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010a: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010b: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., Jr., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Z. Smith, 2022: The midlatitude response to polar sea ice loss: Idealized slab-ocean aquaplanet experiments with thermodynamic sea ice. J. Climate, 35, 26332649, https://doi.org/10.1175/JCLI-D-21-0508.1.

    • Search Google Scholar
    • Export Citation
  • Shell, K. M., J. T. Kiehl, and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmospheric Model. J. Climate, 21, 22692282, https://doi.org/10.1175/2007JCLI2044.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., and Coauthors, 2018: Polar amplification dominated by local forcing and feedbacks. Nat. Climate Change, 8, 10761081, https://doi.org/10.1038/s41558-018-0339-y.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., M. Crucifix, P. Braconnot, C. D. Hewitt, C. Doutriaux, A. J. Broccoli, J. F. B. Mitchell, and M. J. Webb, 2007: Estimating shortwave radiative forcing and response in climate models. J. Climate, 20, 25302543, https://doi.org/10.1175/JCLI4143.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., M. Cai, A. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 70237043, https://doi.org/10.1175/JCLI-D-12-00696.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., and Coauthors, 2022: Process drivers, inter-model spread, and the path forward: A review of amplified Arctic warming. Front. Earth Sci., 9, 758361, https://doi.org/10.3389/feart.2021.758361.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and Coauthors, 2018: Isca, v1.0: A framework for the global modelling of the atmospheres of earth and other planets at varying levels of complexity. Geosci. Model Dev., 11, 843859, https://doi.org/10.5194/gmd-11-843-2018.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., A. Abe-Ouchi, and A. Laîné, 2017: The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium. Climate Dyn., 49, 34573472, https://doi.org/10.1007/s00382-017-3523-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., T. Schneider, Z. Shen, K. G. Pressel, and I. Eisenman, 2022: Seasonal cycle of idealized polar clouds: Large eddy simulations driven by a GCM. J. Adv. Model. Earth Syst., 14, e2021MS002671, https://doi.org/10.1029/2021MS002671.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 593 593 114
Full Text Views 338 338 17
PDF Downloads 304 304 19