Glacial Abrupt Climate Change as a Multiscale Phenomenon Resulting from Monostable Excitable Dynamics

Keno Riechers aComplexity Science, Potsdam Institute for Climate Impact Research, Potsdam, Germany
bEarth System Modelling–School of Engineering and Design, Technical University of Munich, Munich, Germany

Search for other papers by Keno Riechers in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1035-9960
,
Georg Gottwald cSchool of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Georg Gottwald in
Current site
Google Scholar
PubMed
Close
, and
Niklas Boers aComplexity Science, Potsdam Institute for Climate Impact Research, Potsdam, Germany
bEarth System Modelling–School of Engineering and Design, Technical University of Munich, Munich, Germany
dGlobal Systems Institute, Department of Mathematics, University of Exeter, Exeter, United Kingdom

Search for other papers by Niklas Boers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Paleoclimate proxies reveal abrupt transitions of the North Atlantic climate during past glacial intervals known as Dansgaard–Oeschger (DO) events. A central feature of DO events is a sudden warming of about 10°C in Greenland marking the beginning relatively mild phases termed interstadials. These exhibit gradual cooling over several hundred to a few thousand years until a final abrupt decline brings the temperatures back to cold stadial levels. As of now, the exact mechanism behind this millennial-scale variability remains inconclusive. Here, we propose an excitable model to explain Dansgaard–Oeschger cycles, where interstadials occur as noise-induced state-space excursions. Our model comprises the mutual multiscale interactions between four dynamical variables representing Arctic atmospheric temperatures, Nordic seas’ temperatures and sea ice cover, and the Atlantic meridional overturning circulation. The model’s atmosphere–ocean heat flux is moderated by the sea ice, which in turn is subject to large perturbations dynamically generated by fast-evolving intermittent noise. If supercritical, perturbations trigger interstadial-like state-space excursions during which all four model variables undergo qualitative changes that consistently resemble the signature of interstadials in corresponding proxy records. As a physical intermittent process generating the noise, we propose convective events in the ocean or atmospheric blocking events. Our model accurately reproduces the DO cycle shape, return times, and the dependence of the interstadial and stadial durations on the background conditions. In contrast with the prevailing understanding that DO variability is based on bistability in the underlying dynamics, we show that multiscale, monostable excitable dynamics provides a promising alternative to explain millennial-scale climate variability associated with DO events.

Significance Statement

Recent research has highlighted the risk that some Earth system components might undergo abrupt and qualitative change in response to global warming. Proxy records provide evidence for past abrupt climatic changes fundamentally proving the possibility for highly nonlinear state transitions in the climate system. Understanding the dynamics that drove past changes of this kind may help to assess the risk of future tipping events. Here, we propose a new mechanism for the repeated sudden warming events over Greenland that punctuated the last glacial’s climate and reproduce the warmer interstadial intervals drawing on a multiscale, excitable conceptual climate model. Therein, the warmer intervals appear as state-space excursions following stochastic supercritical excitations caused by non-Gaussian noise, which is dynamically generated via fast intermittent dynamics.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Keno Riechers, riechers@pik-potsdam.de

Abstract

Paleoclimate proxies reveal abrupt transitions of the North Atlantic climate during past glacial intervals known as Dansgaard–Oeschger (DO) events. A central feature of DO events is a sudden warming of about 10°C in Greenland marking the beginning relatively mild phases termed interstadials. These exhibit gradual cooling over several hundred to a few thousand years until a final abrupt decline brings the temperatures back to cold stadial levels. As of now, the exact mechanism behind this millennial-scale variability remains inconclusive. Here, we propose an excitable model to explain Dansgaard–Oeschger cycles, where interstadials occur as noise-induced state-space excursions. Our model comprises the mutual multiscale interactions between four dynamical variables representing Arctic atmospheric temperatures, Nordic seas’ temperatures and sea ice cover, and the Atlantic meridional overturning circulation. The model’s atmosphere–ocean heat flux is moderated by the sea ice, which in turn is subject to large perturbations dynamically generated by fast-evolving intermittent noise. If supercritical, perturbations trigger interstadial-like state-space excursions during which all four model variables undergo qualitative changes that consistently resemble the signature of interstadials in corresponding proxy records. As a physical intermittent process generating the noise, we propose convective events in the ocean or atmospheric blocking events. Our model accurately reproduces the DO cycle shape, return times, and the dependence of the interstadial and stadial durations on the background conditions. In contrast with the prevailing understanding that DO variability is based on bistability in the underlying dynamics, we show that multiscale, monostable excitable dynamics provides a promising alternative to explain millennial-scale climate variability associated with DO events.

Significance Statement

Recent research has highlighted the risk that some Earth system components might undergo abrupt and qualitative change in response to global warming. Proxy records provide evidence for past abrupt climatic changes fundamentally proving the possibility for highly nonlinear state transitions in the climate system. Understanding the dynamics that drove past changes of this kind may help to assess the risk of future tipping events. Here, we propose a new mechanism for the repeated sudden warming events over Greenland that punctuated the last glacial’s climate and reproduce the warmer interstadial intervals drawing on a multiscale, excitable conceptual climate model. Therein, the warmer intervals appear as state-space excursions following stochastic supercritical excitations caused by non-Gaussian noise, which is dynamically generated via fast intermittent dynamics.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Keno Riechers, riechers@pik-potsdam.de
Save
  • Berben, S. M. P., T. M. Dokken, P. M. Abbott, E. Cook, H. Sadatzki, M. H. Simon, and E. Jansen, 2020: Independent tephrochronological evidence for rapid and synchronous oceanic and atmospheric temperature rises over the Greenland stadial-interstadial transitions between ca. 32 and 40 ka b2k. Quat. Sci. Rev., 236, 106277, https://doi.org/10.1016/j.quascirev.2020.106277.

    • Search Google Scholar
    • Export Citation
  • Boers, N., M. Ghil, and D. D. Rousseau, 2018: Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles. Proc. Natl. Acad. Sci. USA, 115, E11 005E11 014, https://doi.org/10.1073/pnas.1802573115.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., D. M. Peteet, and D. Rind, 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 2126, https://doi.org/10.1038/315021a0.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., G. Bond, M. Klas, G. Bonani, and W. Wolfli, 1990: A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography, 5, 469477, https://doi.org/10.1029/PA005i004p00469.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., 1994: A simple box model of stochastically forced thermohaline flow. J. Phys. Oceanogr., 24, 19111920, https://doi.org/10.1175/1520-0485(1994)024<1911:ASBMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, H., and Coauthors, 2013: Climate change patterns in Amazonia and biodiversity. Nat. Commun., 4, 1411, https://doi.org/10.1038/ncomms2415.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., and Coauthors, 2009: The last glacial maximum. Science, 325, 710714, https://doi.org/10.1126/science.1172873.

  • Corrick, E. C., and Coauthors, 2020: Synchronous timing of abrupt climate changes during the last glacial period. Science, 369, 963969, https://doi.org/10.1126/science.aay5538.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., H. B. Clausen, N. Gundestrup, C. U. Hammer, S. F. Johnsen, P. M. Kristinsdottir, and N. Reeh, 1982: A new Greenland deep ice core. Science, 218, 12731277, https://doi.org/10.1126/science.218.4579.1273.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. Gundestrup, C. U. Hammer, and H. Oeschger, 1984: North Atlantic climatic oscillations revealed by deep Greenland ice cores. Climate Processes and Climate Sensitivity, J. Hansen and T. Takahashi, Eds., Amer. Geophys. Union, 288–298, https://doi.org/10.1029/GM029p0288.

  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220, https://doi.org/10.1038/364218a0.

    • Search Google Scholar
    • Export Citation
  • De Boer, A. M., A. Gnanadesikan, N. R. Edwards, and A. J. Watson, 2010: Meridional density gradients do not control the Atlantic overturning circulation. J. Phys. Oceanogr., 40, 368380, https://doi.org/10.1175/2009JPO4200.1.

    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P. D., 1999: Observation of α-stable noise induced millennial climate changes from an ice-core record. Geophys. Res. Lett., 26, 14411444, https://doi.org/10.1029/1999GL900252.

    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P. D., M. S. Kristensen, and K. K. Andersen, 2005: The recurrence time of Dansgaard–Oeschger events and limits on the possible periodic component. J. Climate, 18, 25942603, https://doi.org/10.1175/JCLI3437.1.

    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P. D., K. K. Andersen, and A. Svensson, 2007: The DO-climate events are probably noise induced: Statistical investigation of the claimed 1470 years cycle. Climate Past, 3, 129134, https://doi.org/10.5194/cp-3-129-2007.

    • Search Google Scholar
    • Export Citation
  • Dokken, T. M., K. H. Nisancioglu, C. Li, D. S. Battisti, and C. Kissel, 2013: Dansgaard-Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography, 28, 491502, https://doi.org/10.1002/palo.20042.

    • Search Google Scholar
    • Export Citation
  • Drange, H., and Coauthors, 2005: The Nordic seas: An overview. The Nordic Seas: An Integrated Perspective, H. Drange et al., Eds., Amer. Geophys. Union, 1–10, https://doi.org/10.1029/158GM02.

  • Drijfhout, S., E. Gleeson, H. A. Dijkstra, and V. Livina, 2013: Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation. Proc. Natl. Acad. Sci. USA, 110, 19 71319 718, https://doi.org/10.1073/pnas.1304912110.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., 2012: Factors controlling the bifurcation structure of sea ice retreat. J. Geophys. Res., 117, D01111, https://doi.org/10.1029/2011JD016164.

    • Search Google Scholar
    • Export Citation
  • Ezat, M. M., T. L. Rasmussen, and J. Groeneveld, 2014: Persistent intermediate water warming during cold stadials in the southeastern Nordic seas during the past 65 k.y. Geology, 42, 663666, https://doi.org/10.1130/G35579.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, H., M.-L. Siggaard-Andersen, U. Ruth, R. Röthlisberger, and E. Wolff, 2007: Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition. Rev. Geophys., 45, RG1002, https://doi.org/10.1029/2005RG000192.

    • Search Google Scholar
    • Export Citation
  • FitzHugh, R., 1961: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1, 445466, https://doi.org/10.1016/S0006-3495(61)86902-6.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, K., A. Neftel, M. Anklin, and V. Maggi, 1993: Continuous measurements of hydrogen peroxide, formaldehyde, calcium and ammonium concentrations along the new grip ice core from summit, Central Greenland. Atmos. Environ., 27A, 18731880, https://doi.org/10.1016/0960-1686(93)90292-7.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and S. Rahmstorf, 2001: Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153158, https://doi.org/10.1038/35051500.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and S. Rahmstorf, 2002: Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett., 88, 038501, https://doi.org/10.1103/PhysRevLett.88.038501.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Gottschalk, J., L. C. Skinner, S. Misra, C. Waelbroeck, L. Menviel, and A. Timmermann, 2015: Abrupt changes in the southern extent of North Atlantic deep water during Dansgaard–Oeschger events. Nat. Geosci., 8, 950954, https://doi.org/10.1038/ngeo2558.

    • Search Google Scholar
    • Export Citation
  • Gottwald, G. A., 2021: A model for Dansgaard–Oeschger events and millennial-scale abrupt climate change without external forcing. Climate Dyn., 56, 227243, https://doi.org/10.1007/s00382-020-05476-z.

    • Search Google Scholar
    • Export Citation
  • Gottwald, G. A., and I. Melbourne, 2013a: A Huygens principle for diffusion and anomalous diffusion in spatially extended systems. Proc. Natl. Acad. Sci. USA, 110, 84118416, https://doi.org/10.1073/pnas.1217926110.

    • Search Google Scholar
    • Export Citation
  • Gottwald, G. A., and I. Melbourne, 2013b: Homogenization for deterministic maps and multiplicative noise. Proc. Roy. Soc., 469A, 20130201, https://doi.org/10.1098/rspa.2013.0201.

    • Search Google Scholar
    • Export Citation
  • Gottwald, G. A., D. T. Crommelin, and C. L. E. Franzke, 2017: Stochastic climate theory. Nonlinear and Stochastic Climate Dynamics, C. L. E. Franzke and T. J. O’Kane, Eds., Cambridge University Press, 209–240, https://doi.org/10.1017/9781316339251.

  • Hasselmann, K., 1976: Stochastic climate models: Part I. Theory. Tellus, 28A, 473485, https://doi.org/10.1111/j.2153-3490.1976.tb00696.x.

    • Search Google Scholar
    • Export Citation
  • Henry, L. G., J. F. McManus, W. B. Curry, N. L. Roberts, A. M. Piotrowski, and L. D. Keigwin, 2016: North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science, 353, 470474, https://doi.org/10.1126/science.aaf5529.

    • Search Google Scholar
    • Export Citation
  • Hines, S. K. V., A. F. Thompson, and J. F. Adkins, 2019: The role of the southern ocean in abrupt transitions and hysteresis in glacial ocean circulation. Paleoceanogr. Paleoclimatol., 34, 490510, https://doi.org/10.1029/2018PA003415.

    • Search Google Scholar
    • Export Citation
  • Hoff, U., T. L. Rasmussen, R. Stein, M. M. Ezat, and K. Fahl, 2016: Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present. Nat. Commun., 7, 12247, https://doi.org/10.1038/ncomms12247.

    • Search Google Scholar
    • Export Citation
  • Huber, C., and Coauthors, 2006: Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet. Sci. Lett., 243, 504519, https://doi.org/10.1016/j.epsl.2006.01.002.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. F., J. Nilsson, and K. H. Nisancioglu, 2016: The interaction between sea ice and salinity-dominated ocean circulation: Implications for halocline stability and rapid changes of sea ice cover. Climate Dyn., 47, 33013317, https://doi.org/10.1007/s00382-016-3027-5.

    • Search Google Scholar
    • Export Citation
  • Johnsen, S. J., and Coauthors, 1992: Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359, 311313, https://doi.org/10.1038/359311a0.

    • Search Google Scholar
    • Export Citation
  • Johnsen, S. J., and Coauthors, 2001: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci., 16, 299307, https://doi.org/10.1002/jqs.622.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 1997: Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res., 102, 26 47126 487, https://doi.org/10.1029/97JC01283.

    • Search Google Scholar
    • Export Citation
  • Kanner, L. C., S. J. Burns, H. Cheng, and R. L. Edwards, 2012: High-latitude forcing of the South American summer monsoon during the last glacial. Science, 335, 570573, https://doi.org/10.1126/science.1213397.

    • Search Google Scholar
    • Export Citation
  • Kindler, P., M. Guillevic, M. Baumgartner, J. Schwander, A. Landais, and M. Leuenberger, 2014: Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climate Past, 10, 887902, https://doi.org/10.5194/cp-10-887-2014.

    • Search Google Scholar
    • Export Citation
  • Kleppin, H., M. Jochum, B. Otto-Bliesner, C. A. Shields, and S. Yeager, 2015: Stochastic atmospheric forcing as a cause of Greenland climate transitions. J. Climate, 28, 77417763, https://doi.org/10.1175/JCLI-D-14-00728.1.

    • Search Google Scholar
    • Export Citation
  • Kuniyoshi, Y., A. Abe-Ouchi, S. Sherriff-Tadano, W.-L. Chan, and F. Saito, 2022: Effect of climatic precession on Dansgaard-Oeschger-like oscillations. Geophys. Res. Lett., 49, e2021GL095695, https://doi.org/10.1029/2021GL095695.

    • Search Google Scholar
    • Export Citation
  • Kwasniok, F., 2013: Analysis and modelling of glacial climate transitions using simple dynamical systems. Philos. Trans. Roy. Soc., A371, 20110472, https://doi.org/10.1098/rsta.2011.0472.

    • Search Google Scholar
    • Export Citation
  • Landais, A., J. Jouzel, V. Masson-Delmotte, and N. Caillon, 2005: Large temperature variations over rapid climatic events in Greenland: A method based on air isotopic measurements. C. R. Geosci., 337, 947956, https://doi.org/10.1016/j.crte.2005.04.003.

    • Search Google Scholar
    • Export Citation
  • Li, C., and A. Born, 2019: Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events. Quat. Sci. Rev., 203 (5020), 120, https://doi.org/10.1016/j.quascirev.2018.10.031.

    • Search Google Scholar
    • Export Citation
  • Li, C., D. S. Battisti, D. P. Schrag, and E. Tziperman, 2005: Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys. Res. Lett., 32, L19702, https://doi.org/10.1029/2005GL023492.

    • Search Google Scholar
    • Export Citation
  • Li, C., D. S. Battisti, and C. M. Bitz, 2010: Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals? J. Climate, 23, 54575475, https://doi.org/10.1175/2010JCLI3409.1.

    • Search Google Scholar
    • Export Citation
  • Lisiecki, L. E., and M. E. Raymo, 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071.

    • Search Google Scholar
    • Export Citation
  • Livina, V. N., F. Kwasniok, and T. M. Lenton, 2010: Potential analysis reveals changing number of climate states during the last 60 kyr. Climate Past, 6, 7782, https://doi.org/10.5194/cp-6-77-2010.

    • Search Google Scholar
    • Export Citation
  • Lohmann, J., and P. D. Ditlevsen, 2018: Random and externally controlled occurrences of Dansgaard–Oeschger events. Climate Past, 14, 609617, https://doi.org/10.5194/cp-14-609-2018.

    • Search Google Scholar
    • Export Citation
  • Lohmann, J., and P. D. Ditlevsen, 2019: Objective extraction and analysis of statistical features of Dansgaard–Oeschger events. Climate Past, 15, 17711792, https://doi.org/10.5194/cp-15-1771-2019.

    • Search Google Scholar
    • Export Citation
  • Lohmann, J., and A. Svensson, 2022: Ice core evidence for major volcanic eruptions at the onset of Dansgaard–Oeschger warming events. Climate Past, 18, 20212043, https://doi.org/10.5194/cp-18-2021-2022.

    • Search Google Scholar
    • Export Citation
  • Lohmann, J., D. Castellana, P. D. Ditlevsen, and H. A. Dijkstra, 2021: Abrupt climate change as a rate-dependent cascading tipping point. Earth Syst. Dyn., 12, 819835, https://doi.org/10.5194/esd-12-819-2021.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., 2017: The Atlantic meridional overturning circulation and abrupt climate change. Annu. Rev. Mar. Sci., 9, 83104, https://doi.org/10.1146/annurev-marine-010816-060415.

    • Search Google Scholar
    • Export Citation
  • Malmierca-Vallet, I., L. C. Sime, and D–O community members, 2023: Dansgaard–Oeschger events in climate models: Review and baseline marine isotope stage 3 (MIS3) protocol. Climate Past, 19, 915942, https://doi.org/10.5194/cp-19-915-2023.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2006: Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Climate Dyn., 26, 513529, https://doi.org/10.1007/s00382-005-0081-9.

    • Search Google Scholar
    • Export Citation
  • Menviel, L., A. Timmermann, T. Friedrich, and M. H. England, 2014: Hindcasting the continuum of Dansgaard–Oeschger variability: Mechanisms, patterns and timing. Climate Past, 10, 6377, https://doi.org/10.5194/cp-10-63-2014.

    • Search Google Scholar
    • Export Citation
  • Menviel, L., L. C. Skinner, L. Tarasov, and P. C. Tzedakis, 2020: An ice–climate oscillatory framework for Dansgaard–Oeschger cycles. Nat. Rev. Earth Environ., 1, 677693, https://doi.org/10.1038/s43017-020-00106-y.

    • Search Google Scholar
    • Export Citation
  • Mitsui, T., and M. Crucifix, 2017: Influence of external forcings on abrupt millennial-scale climate changes: A statistical modelling study. Climate Dyn., 48, 27292749, https://doi.org/10.1007/s00382-016-3235-z.

    • Search Google Scholar
    • Export Citation
  • Nagumo, J., S. Arimoto, and S. Yoshizawa, 1962: An active pulse transmission line simulating nerve axon. Proc. IRE, 50, 20612070, https://doi.org/10.1109/JRPROC.1962.288235.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Search Google Scholar
    • Export Citation
  • North Greenland Ice Core Project Members, 2004: High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151, https://doi.org/10.1038/nature02805.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-G., 1999: The stability of thermohaline circulation in a two-box model. J. Phys. Oceanogr., 29, 31013110, https://doi.org/10.1175/1520-0485(1999)029<3101:TSOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, S. V., D. P. Schrag, and P. U. Clark, 2013: A new mechanism for Dansgaard-Oeschger cycles. Paleoceanography, 28, 2430, https://doi.org/10.1029/2012PA002364.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, S. O., and Coauthors, 2014: A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev., 106, 1428, https://doi.org/10.1016/j.quascirev.2014.09.007.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, T. L., and E. Thomsen, 2004: The role of the North Atlantic drift in the millennial timescale glacial climate fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol., 210, 101116, https://doi.org/10.1016/j.palaeo.2004.04.005.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, T. L., E. Thomsen, L. Labeyrie, and T. C. E. van Weering, 1996a: Circulation changes in the Faeroe-Shetland channel correlating with cold events during the last glacial period (58-10 ka). Geology, 24, 937940, https://doi.org/10.1130/0091-7613(1996)024<0937:CCITFS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, T. L., E. Thomsen, T. C. E. van Weering, and L. Labeyrie, 1996b: Rapid changes in surface and deep water conditions at the Faeroe Margin during the last 58,000 years. Paleoceanogr. Paleoclimatol., 11, 757771, https://doi.org/10.1029/96PA02618.

    • Search Google Scholar
    • Export Citation
  • Rial, J. A., and R. Saha, 2011: Modeling abrupt climate change as the interaction between sea ice extent and mean ocean temperature under orbital insolation forcing. Abrupt Climate Change: Mechanisms, Patterns, and Impacts, H. Rashid, L. Polyak, and E. Mosley-Thompson, Eds., Amer. Geophys. Union, 57–74, https://doi.org/10.1029/2010GM001027.

  • Roberts, A., and R. Saha, 2017: Relaxation oscillations in an idealized ocean circulation model. Climate Dyn., 48, 21232134, https://doi.org/10.1007/s00382-016-3195-3.

    • Search Google Scholar
    • Export Citation
  • Ruth, U., and Coauthors, 2007: Ice core evidence for a very tight link between North Atlantic and East Asian glacial climate. Geophys. Res. Lett., 34, L03706, https://doi.org/10.1029/2006GL027876.

    • Search Google Scholar
    • Export Citation
  • Sadatzki, H., and Coauthors, 2019: Sea ice variability in the southern Norwegian sea during glacial Dansgaard-Oeschger climate cycles. Sci. Adv., 5, eaau6174, https://doi.org/10.1126/sciadv.aau6174.

    • Search Google Scholar
    • Export Citation
  • Sadatzki, H., and Coauthors, 2020: Rapid reductions and millennial-scale variability in Nordic seas sea ice cover during abrupt glacial climate changes. Proc. Natl. Acad. Sci. USA, 117, 29 47829 486, https://doi.org/10.1073/pnas.2005849117.

    • Search Google Scholar
    • Export Citation
  • Schüpbach, S., and Coauthors, 2018: Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nat. Commun., 9, 1476, https://doi.org/10.1038/s41467-018-03924-3.

    • Search Google Scholar
    • Export Citation
  • Seierstad, I. K., and Coauthors, 2014: Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev., 106, 2946, https://doi.org/10.1016/j.quascirev.2014.10.032.

    • Search Google Scholar
    • Export Citation
  • Singh, H. A., D. S. Battisti, and C. M. Bitz, 2014: A heuristic model of Dansgaard–Oeschger cycles. Part I: Description, results, and sensitivity studies. J. Climate, 27, 43374358, https://doi.org/10.1175/JCLI-D-12-00672.1.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13A, 224230, https://doi.org/10.3402/tellusa.v13i2.9491.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., S. K. Hines, and J. F. Adkins, 2019: A Southern Ocean mechanism for the interhemispheric coupling and phasing of the bipolar seesaw. J. Climate, 32, 43474365, https://doi.org/10.1175/JCLI-D-18-0621.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and G. Lohmann, 2000: Noise-induced transitions in a simplified model of the thermohaline circulation. J. Phys. Oceanogr., 30, 18911900, https://doi.org/10.1175/1520-0485(2000) 030<1891:NITIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., H. Gildor, M. Schulz, and E. Tziperman, 2003: Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. J. Climate, 16, 25692585, https://doi.org/10.1175/1520-0442(2003)016<2569:CRMCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., and W. R. Peltier, 2015: Interhemispheric air temperature phase relationships in the nonlinear Dansgaard-Oeschger oscillation. Geophys. Res. Lett., 42, 11801189, https://doi.org/10.1002/2014GL062898.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., and W. R. Peltier, 2018: Fast physics and slow physics in the nonlinear Dansgaard–Oeschger relaxation oscillation. J. Climate, 31, 34233449, https://doi.org/10.1175/JCLI-D-17-0559.1.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., P. Ditlevsen, M. Jochum, and S. O. Rasmussen, 2022: Atmospheric CO2 control of spontaneous millennial-scale ice age climate oscillations. Nat. Geosci., 15, 300306, https://doi.org/10.1038/s41561-022-00920-7.

    • Search Google Scholar
    • Export Citation
  • Voelker, A. H. L., 2002: Global distribution of centennial-scale records for marine isotope stage (MIS) 3: A database. Quat. Sci. Rev., 21, 11851212, https://doi.org/10.1016/S0277-3791(01)00139-1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. J., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C.-C. Shen, and J. A. Dorale, 2001: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294, 23452348, https://doi.org/10.1126/science.1064618.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and Coauthors, 2019: Stability of the Atlantic meridional overturning circulation: A review and synthesis. J. Geophys. Res. Oceans, 124, 53365375, https://doi.org/10.1029/2019JC015083.

    • Search Google Scholar
    • Export Citation
  • Yang, H., K. Wang, H. Dai, Y. Wang, and Q. Li, 2016: Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion. Climate Dyn., 46, 33873403, https://doi.org/10.1007/s00382-015-2774-z.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Lohmann, G. Knorr, and C. Purcell, 2014: Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290294, https://doi.org/10.1038/nature13592.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Barker, G. Knorr, G. Lohmann, R. Drysdale, Y. Sun, D. Hodell, and F. Chen, 2021: Direct astronomical influence on abrupt climate variability. Nat. Geosci., 14, 819826, https://doi.org/10.1038/s41561-021-00846-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2017: Different precipitation patterns across tropical South America during Heinrich and Dansgaard-Oeschger stadials. Quat. Sci. Rev., 177, 19, https://doi.org/10.1016/j.quascirev.2017.10.012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 330 330 61
Full Text Views 75 75 11
PDF Downloads 81 81 5