Modes of Variability in E3SM and CESM Large Ensembles

John T. Fasullo aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by John T. Fasullo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1216-892X
,
Julie M. Caron aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Julie M. Caron in
Current site
Google Scholar
PubMed
Close
,
Adam Phillips aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Adam Phillips in
Current site
Google Scholar
PubMed
Close
,
Hui Li aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hui Li in
Current site
Google Scholar
PubMed
Close
,
Jadwiga H. Richter aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jadwiga H. Richter in
Current site
Google Scholar
PubMed
Close
,
Richard B. Neale aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard B. Neale in
Current site
Google Scholar
PubMed
Close
,
Nan Rosenbloom aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Nan Rosenbloom in
Current site
Google Scholar
PubMed
Close
,
Gary Strand aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gary Strand in
Current site
Google Scholar
PubMed
Close
,
Sasha Glanville aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Sasha Glanville in
Current site
Google Scholar
PubMed
Close
,
Yuanpu Li aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Yuanpu Li in
Current site
Google Scholar
PubMed
Close
,
Flavio Lehner aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Flavio Lehner in
Current site
Google Scholar
PubMed
Close
,
Gerald Meehl aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gerald Meehl in
Current site
Google Scholar
PubMed
Close
,
Jean-Christophe Golaz bLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Jean-Christophe Golaz in
Current site
Google Scholar
PubMed
Close
,
Paul Ullrich bLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Paul Ullrich in
Current site
Google Scholar
PubMed
Close
,
Jiwoo Lee bLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Jiwoo Lee in
Current site
Google Scholar
PubMed
Close
, and
Julie Arblaster cSchool of Earth Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Julie Arblaster in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An adequate characterization of internal modes of climate variability (MoV) is a prerequisite for both accurate seasonal predictions and climate change detection and attribution. Assessing the fidelity of climate models in simulating MoV is therefore essential; however, doing so is complicated by the large intrinsic variations in MoV and the limited span of the observational record. Large ensembles (LEs) provide a unique opportunity to assess model fidelity in simulating MoV and quantify intermodel contrasts. In this work, these goals are pursued in four recently produced LEs: the Energy Exascale Earth System Model (E3SM) versions 1 and 2 LEs, and the Community Earth System Model (CESM) versions 1 and 2 LEs. In general, the representation of global coupled modes is found to improve across successive E3SM and CESM versions in conjunction with the fidelity of the base state climate while the patterns of extratropical modes are well simulated across the ensembles. Various persistent shortcomings for all MoV are however identified and discussed. The results both demonstrate the successes of these recent model versions and suggest the potential for continued improvement in the representation of MoV with advances in model physics.

Significance Statement

Modes of variability play a critical role in prediction of seasonal to decadal climate variability and detection of forced climate change, but historically many modes have been poorly simulated by coupled climate models. Using recently produced large ensembles, this work demonstrates the improved simulation of a broad range of internal modes in successive versions of the E3SM and CESM and discusses opportunities for further advances.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Fasullo, fasullo@ucar.edu

Abstract

An adequate characterization of internal modes of climate variability (MoV) is a prerequisite for both accurate seasonal predictions and climate change detection and attribution. Assessing the fidelity of climate models in simulating MoV is therefore essential; however, doing so is complicated by the large intrinsic variations in MoV and the limited span of the observational record. Large ensembles (LEs) provide a unique opportunity to assess model fidelity in simulating MoV and quantify intermodel contrasts. In this work, these goals are pursued in four recently produced LEs: the Energy Exascale Earth System Model (E3SM) versions 1 and 2 LEs, and the Community Earth System Model (CESM) versions 1 and 2 LEs. In general, the representation of global coupled modes is found to improve across successive E3SM and CESM versions in conjunction with the fidelity of the base state climate while the patterns of extratropical modes are well simulated across the ensembles. Various persistent shortcomings for all MoV are however identified and discussed. The results both demonstrate the successes of these recent model versions and suggest the potential for continued improvement in the representation of MoV with advances in model physics.

Significance Statement

Modes of variability play a critical role in prediction of seasonal to decadal climate variability and detection of forced climate change, but historically many modes have been poorly simulated by coupled climate models. Using recently produced large ensembles, this work demonstrates the improved simulation of a broad range of internal modes in successive versions of the E3SM and CESM and discusses opportunities for further advances.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Fasullo, fasullo@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.3693 MB)
Save
  • Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140 (678), 121, https://doi.org/10.1002/qj.2132.

    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., and Coauthors, 2022: Impacts, processes and projections of the quasi-biennial oscillation. Nat. Rev. Earth Environ., 3, 588603, https://doi.org/10.1038/s43017-022-00323-7.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The Quasi-Biennial Oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2023: Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Environ., 4, 754769, https://doi.org/10.1038/s43017-023-00486-x.

    • Search Google Scholar
    • Export Citation
  • Coburn, J., and S. C. Pryor, 2021: Differential credibility of climate modes in CMIP6. J. Climate, 34, 81458164, https://doi.org/10.1175/JCLI-D-21-0359.1.

    • Search Google Scholar
    • Export Citation
  • Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and C. E. Bloecker, 2019: Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Climate Dyn., 52, 289306, https://doi.org/10.1007/s00382-018-4132-4.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407, https://doi.org/10.1007/s003820050230.

    • Search Google Scholar
    • Export Citation
  • Dasgupta, P., A. Metya, C. V. Naidu, M. Singh, and M. K. Roxy, 2020: Exploring the long-term changes in the Madden Julian Oscillation using machine learning. Sci. Rep., 10, 18567, https://doi.org/10.1038/s41598-020-75508-5.

    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2020: From CMIP3 to CMIP6: Northern Hemisphere atmospheric blocking simulation in present and future climate. J. Climate, 33, 10 02110 038, https://doi.org/10.1175/JCLI-D-19-0862.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and A. S. Phillips, 2021: Defining the internal component of Atlantic multidecadal variability in a changing climate. Geophys. Res. Lett., 48, e2021GL095023, https://doi.org/10.1029/2021GL095023.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012a: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012b: ENSO and Pacific decadal variability in Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Terray, and A. S. Phillips, 2016: Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications. J. Climate, 29, 22372258, https://doi.org/10.1175/JCLI-D-15-0304.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, 30, 50595082, https://doi.org/10.1175/JCLI-D-16-0844.1.

    • Search Google Scholar
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dyn., 38, 19651972, https://doi.org/10.1007/s00382-011-1097-y.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and D. P. Delisi, 1985: Climatology of the equatorial lower stratosphere. J. Atmos. Sci., 42, 376396, https://doi.org/10.1175/1520-0469(1985)042<0376:COTELS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eyring, V. S., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., 2020: Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1). Geosci. Model Dev., 13, 36273642, https://doi.org/10.5194/gmd-13-3627-2020.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., A. Phillips, and C. Deser, 2020: Evaluation of leading modes of climate variability in the CMIP archives. J. Climate, 33, 55275545, https://doi.org/10.1175/JCLI-D-19-1024.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and Coauthors, 2022: Spurious late historical‐era warming in CESM2 driven by prescribed biomass burning emissions. Geophys. Res. Lett., 49, e2021GL097420, https://doi.org/10.1029/2021GL097420.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and Coauthors, 2023: An overview of the E3SM version 2 large ensemble and comparison to other E3SM and CESM large ensembles. EGUsphere, 2023, 1–32, https://doi.org/10.5194/egusphere-2023-2310.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011: The influence of the Quasi-Biennial Oscillation on the troposphere in winter in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci., 68, 20262041, https://doi.org/10.1175/2011JAS3702.1.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and P. Martineau, 2018: Quantifying the variability of the annular modes: Reanalysis uncertainty vs. sampling uncertainty. Atmos. Chem. Phys., 18, 17 09917 117, https://doi.org/10.5194/acp-18-17099-2018.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., and Coauthors, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., and Coauthors, 2022: The DOE E3SM model version 2: Overview of the physical model and initial model evaluation. J. Adv. Model. Earth Syst., 14, e2022MS003156, https://doi.org/10.1029/2022MS003156.

    • Search Google Scholar
    • Export Citation
  • Guo, R., C. Deser, L. Terray, and F. Lehner, 2019: Human influence on winter precipitation trends (1921–2015) over North America and Eurasia revealed by dynamical adjustment. Geophys. Res. Lett., 46, 34263434, https://doi.org/10.1029/2018GL081316.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial Quasi-Biennial Oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2009: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 78, 2841, https://doi.org/10.1016/j.jmarsys.2008.11.026.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2020: Fifty years of research on the Madden-Julian Oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res. Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., and M. Latif, 2007: Understanding equatorial Atlantic interannual variability. J. Climate, 20, 131142, https://doi.org/10.1175/JCLI3992.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H., Caron, J. M., Richter, J. H., and Simpson, I. R., 2020: The lack of QBO‐MJO connection in CMIP6 models. Geophys. Res. Lett., 47, e2020GL087295, https://doi.org/10.1029/2020GL087295.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and Coauthors, 2021: Sources of subseasonal predictability over CONUS during boreal summer. J. Climate, 34, 32733294, https://doi.org/10.1175/JCLI-D-20-0586.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, D., and A. R. Ganguly, 2018: Intercomparison of model response and internal variability across climate model ensembles. Climate Dyn., 51, 207219, https://doi.org/10.1007/s00382-017-3914-4.

    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Search Google Scholar
    • Export Citation
  • Lee, J., K. R. Sperber, P. J. Gleckler, C. J. W. Bonfils, and K. E. Taylor, 2019: Quantifying the agreement between observed and simulated extratropical modes of interannual variability. Climate Dyn., 52, 40574089, https://doi.org/10.1007/s00382-018-4355-4.

    • Search Google Scholar
    • Export Citation
  • Lee, J., K. R. Sperber, P. J. Gleckler, K. E. Taylor, and C. J. W. Bonfils, 2021: Benchmarking performance changes in the simulation of extratropical modes of variability across CMIP generations. J. Climate, 34, 69456969, https://doi.org/10.1175/JCLI-D-20-0832.1.

    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, I. R. Simpson, and L. Terray, 2018: Attributing the U.S. Southwest’s recent shift into drier conditions. Geophys. Res. Lett., 45, 62516261, https://doi.org/10.1029/2018GL078312.

    • Search Google Scholar
    • Export Citation
  • Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124, 63076326, https://doi.org/10.1029/2018JD029522.

    • Search Google Scholar
    • Export Citation
  • Li, Y., J. Wu, J.-J. Luo, and Y. M. Yang, 2022: Evaluating the eastward propagation of the MJO in CMIP5 and CMIP6 models based on a variety of diagnostics. J. Climate, 35, 17191743, https://doi.org/10.1175/JCLI-D-21-0378.1.

    • Search Google Scholar
    • Export Citation
  • Liess, S., and M. A. Geller, 2012: On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res., 117, D03108, https://doi.org/10.1029/2011JD016317.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, J. M. Arblaster, F. Delage, H. Nguyen, S.-K. Min, and M. C. Wheeler, 2016: The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophys. Res. Lett., 43, 71607167, https://doi.org/10.1002/2016GL069453.

    • Search Google Scholar
    • Export Citation
  • Lu, H., M. H. Hitchman, L. J. Gray, J. A. Anstey, and S. M. Osprey, 2020: On the role of Rossby wave breaking in the quasi-biennial modulation of the stratospheric polar vortex during boreal winter. Quart. J. Roy. Meteor. Soc., 146, 19391959, https://doi.org/10.1002/qj.3775.

    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., and C. Deser, 2018: Internal variability and regional climate trends in an observational large ensemble. J. Climate, 31, 67836802, https://doi.org/10.1175/JCLI-D-17-0901.1.

    • Search Google Scholar
    • Export Citation
  • Medhaug, I., M. B. Stolpe, E. M. Fischer, and R. Knutti, 2017: Reconciling controversies about the ‘global warming hiatus’. Nature, 545, 4147, https://doi.org/10.1038/nature22315.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and H. Teng, 2016: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific Oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2023: Climate base state influences on South Asian monsoon processes derived from analyses of E3SMv2 and CESM2. Geophys. Res. Lett., 50, e2023GL104313, https://doi.org/10.1029/2023GL104313.

    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149, https://doi.org/10.1007/s00382-010-0902-3.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., 2014: Characterising the relationship between weather extremes in Europe and synoptic circulation features. Nat. Hazards Earth Syst. Sci., 14, 14611475, https://doi.org/10.5194/nhess-14-1461-2014.

    • Search Google Scholar
    • Export Citation
  • Phillips, A. S., C. Deser, J. Fasullo, D. P. Schneider, and I. R. Simpson, 2020: Assessing climate variability and change in model large ensembles: A user’s guide to the “Climate Variability Diagnostics Package for Large Ensembles”. OpenSky, 53 pp., https://doi.org/10.5065/h7c7-f961.

  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and Coauthors, 2019: An overview of the atmospheric component of the energy exascale Earth system model. J. Adv. Model. Earth Syst., 11, 23772411, https://doi.org/10.1029/2019MS001629.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Climate Dyn., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and H. Tokinaga, 2020: An overview of the performance of CMIP6 models in the tropical Atlantic: Mean state, variability, and remote impacts. Climate Dyn., 55, 25792601, https://doi.org/10.1007/s00382-020-05409-w.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., J. A. Anstey, N. Butchart, Y. Kawatani, G. A. Meehl, S. Osprey, and I. R. Simpson, 2020: Progress in simulating the Quasi-Biennial Oscillation in CMIP models. J. Geophys. Res. Atmos., 125, e2019JD032362, https://doi.org/10.1029/2019JD032362.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and Coauthors, 2022: Response of the Quasi-Biennial Oscillation to a warming climate in global climate models. Quart. J. Roy. Meteor. Soc., 148, 14901518, https://doi.org/10.1002/qj.3749.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., A. Kumar, M. Peña, and F. Vitart, 2015: Improving and promoting subseasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 96, ES49ES53, https://doi.org/10.1175/BAMS-D-14-00139.1.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., and Coauthors, 2021: Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn., 12, 13931411, https://doi.org/10.5194/esd-12-1393-2021.

    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013: Berkeley Earth temperature averaging process. Geoinf. Geostat., 1 (2), https://doi.org/10.4172/2327-4581.1000103.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2009: Incorporating model quality information in climate change detection and attribution studies. Proc. Natl. Acad. Sci. USA, 106, 14 77814 783, https://doi.org/10.1073/pnas.0901736106.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., and Coauthors, 2020: Northern Hemisphere blocking simulation in current climate models: Evaluating progress from the Climate Model Intercomparison Project phase 5 to 6 and sensitivity to resolution. Wea. Climate Dyn., 1, 277292, https://doi.org/10.5194/wcd-1-277-2020.

    • Search Google Scholar
    • Export Citation
  • Schurer, A. P., G. C. Hegerl, M. E. Mann, S. F. B. Tett, and S. J. Phipps, 2013: Separating forced from chaotic climate variability over the past millennium. J. Climate, 26, 69546973, https://doi.org/10.1175/JCLI-D-12-00826.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., S. G. Yeager, K. A. McKinnon, and C. Deser, 2019: Decadal predictability of late winter precipitation in western Europe through an ocean–jet stream connection. Nat. Geosci., 12, 613619, https://doi.org/10.1038/s41561-019-0391-x.

    • Search Google Scholar
    • Export Citation
  • Son, S. W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden–Julian Oscillation. J. Climate, 30, 19091922, https://doi.org/10.1175/JCLI-D-16-0620.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., X. Huang, Y. Zhao, E. Di Lorenzo, M. Newman, L. van Roekel, T. Xu, and A. Capotondi, 2023: Ensemble spread behavior in coupled climate models: Insights from the energy exascale Earth system model version 1 large ensemble. J. Adv. Model. Earth Syst., 15, e2023MS003653, https://doi.org/10.1029/2023MS003653.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone, X. Zhang, and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. Wiley Interdiscip. Rev.: Climate Change, 1, 192211, https://doi.org/10.1002/wcc.34.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., and B. Yu, 2008: MJO and its relationship to ENSO. J. Geophys. Res., 113, D14106, https://doi.org/10.1029/2007JD009230.

  • Thoma, M., R. J. Greatbatch, C. Kadow, and R. Gerdes, 2015: Decadal hindcasts initialized using observed surface wind stress: Evaluation and prediction out to 2024. Geophys. Res. Lett., 42, 64546461, https://doi.org/10.1002/2015GL064833.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, https://doi.org/10.1002/2013EF000165.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2020: Aerosols in the E3SM version 1: New developments and their impacts on radiative forcing. J. Adv. Model. Earth Syst., 12, e2019MS001851, https://doi.org/10.1029/2019MS001851.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H.-M. Kim, E. K. M. Chang, and S.-W. Son, 2018: Modulation of the MJO and North Pacific storm track relationship by the QBO. J. Geophys. Res. Atmos., 123, 39763992, https://doi.org/10.1029/2017JD027977.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2018: Understanding cloud and convective characteristics in version 1 of the E3SM Atmosphere Model. J. Adv. Model. Earth Syst., 10, 2618–2644, https://doi.org/10.1029/2018ms001350.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The OceanAtmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142, https://doi.org/10.1029/147GM07.

  • Yang, Y., L. Wu, W. Cai, F. Jia, B. Ng, G. Wang, and T. Geng, 2022: Suppressed Atlantic Niño/Niña variability under greenhouse warming. Nat. Climate Change, 12, 814821, https://doi.org/10.1038/s41558-022-01444-z.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., and S. W. Son, 2016: Modulation of the boreal wintertime Madden-Julian Oscillation by the stratospheric Quasi-Biennial Oscillation. Geophys. Res. Lett., 43, 13921398, https://doi.org/10.1002/2016GL067762.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671586, https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 621 621 89
Full Text Views 254 254 33
PDF Downloads 303 303 46