The Hybrid Recharge Delayed Oscillator: A More Realistic El Niño Conceptual Model

Takeshi Izumo aInstitut de Recherche pour le Développement (IRD), UMR241 SECOPOL (ex-EIO) Laboratory, Université de la Polynésie Française (UPF), Tahiti, French Polynesia
bSorbonne Université–CNRS-IRD-MNHN, LOCEAN, IPSL, Paris, France

Search for other papers by Takeshi Izumo in
Current site
Google Scholar
PubMed
Close
,
Maxime Colin cClimate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
dLaboratoire GEPASUD, University of French Polynesia, Tahiti, French Polynesia

Search for other papers by Maxime Colin in
Current site
Google Scholar
PubMed
Close
,
Fei-Fei Jin eDepartment of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Fei-Fei Jin in
Current site
Google Scholar
PubMed
Close
, and
Bastien Pagli aInstitut de Recherche pour le Développement (IRD), UMR241 SECOPOL (ex-EIO) Laboratory, Université de la Polynésie Française (UPF), Tahiti, French Polynesia

Search for other papers by Bastien Pagli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is the leading mode of climate interannual variability, with large socioeconomical and environmental impacts, potentially increasing with climate change. Improving its understanding may shed further light on its predictability. Here we revisit the two main conceptual models for explaining ENSO cyclic nature, namely, the recharge oscillator (RO) and the advective–reflective delayed oscillator (DO). Some previous studies have argued that these two models capture similar physical processes. Yet, we show here that they actually capture two distinct roles of ocean wave dynamics in ENSO’s temperature tendency equation, using observations, reanalyses, and Climate Model Intercomparison Project (CMIP) models. The slow recharge/discharge process mostly influences central-eastern Pacific by favoring warmer equatorial undercurrent and equatorial upwelling, while the 6-month delayed advective–reflective feedback process dominates in the western-central Pacific. We thus propose a hybrid recharge delayed oscillator (RDO) that combines these two distinct processes into one conceptual model, more realistic than the RO or DO alone. The RDO eigenvalues (frequency and growth rate) are highly sensitive to the relative strengths of the recharge/discharge and delayed negative feedbacks, which have distinct dependencies to mean state. Combining these two feedbacks explains most of ENSO frequency diversity among models. Thanks to the two different spatial patterns involved, the RDO can even capture ENSO spatiotemporal diversity and complexity. We also develop a fully nonlinear and seasonal RDO, even more robust and realistic, investigating each nonlinear term. The great RDO sensitivity may explain the observed and simulated richness in ENSO’s characteristics and predictability.

Significance Statement

El Niño and La Niña events, and the related Southern Oscillation, cause the largest year-to-year variations of Earth’s climate. Yet the theories behind them are still debated, with two main conceptual models being the recharge oscillator and the delayed oscillator. Our purpose here is to address this debate by developing a more realistic theory, a hybrid recharge delayed oscillator. We show how simple yet realistic it is, with equivalent contributions from the slow recharge process and from the faster delayed feedback. It even captures the observed El Niño and La Niña diversity in space and in frequency. Future studies could use the simple theoretical framework provided here to investigate El Niño–Southern Oscillation (ENSO) in observations, theories, climate models diagnostics and forecasts, and global warming projections.

Colin’s current affiliation: Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takeshi Izumo, takeshi.izumo@ird.fr

Abstract

El Niño–Southern Oscillation (ENSO) is the leading mode of climate interannual variability, with large socioeconomical and environmental impacts, potentially increasing with climate change. Improving its understanding may shed further light on its predictability. Here we revisit the two main conceptual models for explaining ENSO cyclic nature, namely, the recharge oscillator (RO) and the advective–reflective delayed oscillator (DO). Some previous studies have argued that these two models capture similar physical processes. Yet, we show here that they actually capture two distinct roles of ocean wave dynamics in ENSO’s temperature tendency equation, using observations, reanalyses, and Climate Model Intercomparison Project (CMIP) models. The slow recharge/discharge process mostly influences central-eastern Pacific by favoring warmer equatorial undercurrent and equatorial upwelling, while the 6-month delayed advective–reflective feedback process dominates in the western-central Pacific. We thus propose a hybrid recharge delayed oscillator (RDO) that combines these two distinct processes into one conceptual model, more realistic than the RO or DO alone. The RDO eigenvalues (frequency and growth rate) are highly sensitive to the relative strengths of the recharge/discharge and delayed negative feedbacks, which have distinct dependencies to mean state. Combining these two feedbacks explains most of ENSO frequency diversity among models. Thanks to the two different spatial patterns involved, the RDO can even capture ENSO spatiotemporal diversity and complexity. We also develop a fully nonlinear and seasonal RDO, even more robust and realistic, investigating each nonlinear term. The great RDO sensitivity may explain the observed and simulated richness in ENSO’s characteristics and predictability.

Significance Statement

El Niño and La Niña events, and the related Southern Oscillation, cause the largest year-to-year variations of Earth’s climate. Yet the theories behind them are still debated, with two main conceptual models being the recharge oscillator and the delayed oscillator. Our purpose here is to address this debate by developing a more realistic theory, a hybrid recharge delayed oscillator. We show how simple yet realistic it is, with equivalent contributions from the slow recharge process and from the faster delayed feedback. It even captures the observed El Niño and La Niña diversity in space and in frequency. Future studies could use the simple theoretical framework provided here to investigate El Niño–Southern Oscillation (ENSO) in observations, theories, climate models diagnostics and forecasts, and global warming projections.

Colin’s current affiliation: Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takeshi Izumo, takeshi.izumo@ird.fr

Supplementary Materials

    • Supplemental Materials (PDF 5.6120 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., E. Tziperman, Y. M. Okumura, and T. Li, 2020a: ENSO irregularity and asymmetry. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 153–172, https://doi.org/10.1002/9781119548164.ch7.

  • An, S.-I., S.-K. Kim, and A. Timmermann, 2020b: Fokker–Planck dynamics of the El Niño–Southern Oscillation. Sci. Rep., 10, 16282, https://doi.org/10.1038/s41598-020-73449-7.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Ballester, J., S. Bordoni, D. Petrova, and X. Rodó, 2015: On the dynamical mechanisms explaining the western Pacific subsurface temperature buildup leading to ENSO events. Geophys. Res. Lett., 42, 29612967, https://doi.org/10.1002/2015GL063701.

    • Search Google Scholar
    • Export Citation
  • Ballester, J., S. Bordoni, D. Petrova, and X. Rodó, 2016: Heat advection processes leading to El Niño events as depicted by an ensemble of ocean assimilation products. J. Geophys. Res. Oceans, 121, 37103729, https://doi.org/10.1002/2016JC011718.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry, and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., M. Latif, D. Dommenget, C. Wengel, J. Harlaß, and W. Park, 2018: Mean-state dependence of ENSO atmospheric feedbacks in climate models. Climate Dyn., 50, 31713194, https://doi.org/10.1007/s00382-017-3799-2.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., C. Wengel, M. Latif, D. Dommenget, J. Lübbecke, and W. Park, 2019: Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Climate Dyn., 53, 155172, https://doi.org/10.1007/s00382-018-4575-7.

    • Search Google Scholar
    • Export Citation
  • Behera, S., and T. Yamagata, 2010: Imprint of the El Niño Modoki on decadal sea level changes. Geophys. Res. Lett., 37, L23702, https://doi.org/10.1029/2010GL045936.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., É. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and S. Raynaud, 1997: Kinematics of the Pacific equatorial undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27, 10381053, https://doi.org/10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., and C. Menkes, 2001: The Trident Pacific model. Part 2: Role of long equatorial wave reflection on sea surface temperature anomalies during the 1993–1998 TOPEX/POSEIDON period. Climate Dyn., 17, 175186, https://doi.org/10.1007/PL00013734.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., C. Menkes, and M. Lengaigne, 2004: Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997–1998 El Niño. Climate Dyn., 22, 267280, https://doi.org/10.1007/s00382-003-0383-8.

    • Search Google Scholar
    • Export Citation
  • Bunge, L., and A. J. Clarke, 2009: A verified estimation of the El Niño index Niño-3.4 since 1877. J. Climate, 22, 39793992, https://doi.org/10.1175/2009JCLI2724.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2021: Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ., 2, 628644, https://doi.org/10.1038/s43017-021-00199-z.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118, 47554770, https://doi.org/10.1002/jgrc.20335.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. T. Wittenberg, J. S. Kug, K. Takahashi, and M. J. McPhaden, 2020: ENSO diversity. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Amer. Geophys. Union, 65–86, https://doi.org/10.1002/9781119548164.ch4.

  • Chen, H.-C., and F.-F. Jin, 2020: Fundamental behavior of ENSO phase locking. J. Climate, 33, 19531968, https://doi.org/10.1175/JCLI-D-19-0264.1.

    • Search Google Scholar
    • Export Citation
  • Chen, N., and X. Fang, 2023: A simple multiscale intermediate coupled stochastic model for El Niño diversity and complexity. J. Adv. Model. Earth Syst., 15, e2022MS003469, https://doi.org/10.1029/2022MS003469.

    • Search Google Scholar
    • Export Citation
  • Chen, N., X. Fang, and J.-Y. Yu, 2022: A multiscale model for El Niño complexity. npj Climate Atmos. Sci., 5, 16, https://www.nature.com/articles/s41612-022-00241-x.

    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate, 26, 94629476, https://doi.org/10.1175/JCLI-D-13-00045.1.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1994: Why are surface equatorial ENSO winds anomalously westerly under anomalous large-scale convection? J. Climate, 7, 16231627, https://doi.org/10.1175/1520-0442(1994)007<1623:WASEEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Academic Press, 324 pp.

  • Clarke, A. J., 2010: Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: The “tilt” and “warm water volume” modes. J. Phys. Oceanogr., 40, 121137, https://doi.org/10.1175/2009JPO4263.1.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., S. Van Gorder, and G. Colantuono, 2007: Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J. Phys. Oceanogr., 37, 10771091, https://doi.org/10.1175/JPO3035.1.

    • Search Google Scholar
    • Export Citation
  • Crespo, L. R., M. Belén Rodríguez-Fonseca, I. Polo, N. Keenlyside, and D. Dommenget, 2022: Multidecadal variability of ENSO in a recharge oscillator framework. Environ. Res. Lett., 17, 074008, https://doi.org/10.1088/1748-9326/ac72a3.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the persistence of La Niña. J. Climate, 27, 73357355, https://doi.org/10.1175/JCLI-D-14-00033.1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and Y. Yu, 2017: The effects of remote SST forcings on ENSO dynamics, variability and diversity. Climate Dyn., 49, 26052624, https://doi.org/10.1007/s00382-016-3472-1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Al-Ansari, 2023: Asymmetries in the ENSO phase space. Climate Dyn., 60, 21472166, https://doi.org/10.1007/s00382-022-06392-0.

    • Search Google Scholar
    • Export Citation
  • Fang, X.-H., and M. Mu, 2018: A three-region conceptual model for central Pacific El Niño including zonal advective feedback. J. Climate, 31, 49654979, https://doi.org/10.1175/JCLI-D-17-0633.1.

    • Search Google Scholar
    • Export Citation
  • Fang, X.-H., and F. Zheng, 2021: Effect of the air–sea coupled system change on the ENSO evolution from boreal spring. Climate Dyn., 57, 109120, https://doi.org/10.1007/s00382-021-05697-w.

    • Search Google Scholar
    • Export Citation
  • Fang, X.-H., and N. Chen, 2023: Quantifying the predictability of ENSO complexity using a statistically accurate multiscale stochastic model and information theory. J. Climate, 36, 26812702, https://doi.org/10.1175/JCLI-D-22-0151.1.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2010: Ocean response to wind variations, warm water volume, and simple models of ENSO in the low-frequency approximation. J. Climate, 23, 38553873, https://doi.org/10.1175/2010JCLI3044.1.

    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett., 39, L02706, https://doi.org/10.1029/2011GL050520.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, https://doi.org/10.1038/312141a0.

    • Search Google Scholar
    • Export Citation
  • Gasparin, F., and D. Roemmich, 2017: The seasonal march of the equatorial Pacific upper-ocean and its El Niño variability. Prog. Oceanogr., 156, 116, https://doi.org/10.1016/j.pocean.2017.05.010.

    • Search Google Scholar
    • Export Citation
  • Geng, T., W. Cai, and L. Wu, 2020: Two types of ENSO varying in tandem facilitated by nonlinear atmospheric convection. Geophys. Res. Lett., 47, e2020GL088784, https://doi.org/10.1029/2020GL088784.

    • Search Google Scholar
    • Export Citation
  • Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Graham, F. S., J. N. Brown, A. T. Wittenberg, and N. J. Holbrook, 2015: Reassessing conceptual models of ENSO. J. Climate, 28, 91219142, https://doi.org/10.1175/JCLI-D-14-00812.1.

    • Search Google Scholar
    • Export Citation
  • Hasegawa, T., T. Horii, and K. Hanawa, 2006: Two different features of discharge of equatorial upper ocean heat content related to El Niño events. Geophys. Res. Lett., 33, L02609, https://doi.org/10.1029/2005GL024832.

    • Search Google Scholar
    • Export Citation
  • Hayashi, M., F.-F. Jin, and M. F. Stuecker, 2020: Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun., 11, 4230, https://doi.org/10.1038/s41467-020-17983-y.

    • Search Google Scholar
    • Export Citation
  • He, J., N. C. Johnson, G. A. Vecchi, B. Kirtman, A. T. Wittenberg, and S. Sturm, 2018: Precipitation sensitivity to local variations in tropical sea surface temperature. J. Climate, 31, 92259238, https://doi.org/10.1175/JCLI-D-18-0262.1.

    • Search Google Scholar
    • Export Citation
  • Iwakiri, T., and M. Watanabe, 2022: Multiyear ENSO dynamics as revealed in observations, climate model simulations, and the linear recharge oscillator. J. Climate, 35, 76257642, https://doi.org/10.1175/JCLI-D-22-0108.1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., 2003: The equatorial undercurrent and associated mass and heat exchanges in the tropical Pacific: Variability, links with El Niño–La Niña events. Ph.D. manuscript, Université Paul Sabatier Toulouse III, 239 pp.

  • Izumo, T., 2005: The equatorial undercurrent, meridional overturning circulation, and their roles in mass and heat exchanges during El Niño events in the tropical Pacific Ocean. Ocean Dyn., 55, 110123, https://doi.org/10.1007/s10236-005-0115-1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and M. Colin, 2022: Improving and harmonizing El Niño recharge indices. Geophys. Res. Lett., 49, e2022GL101003, https://doi.org/10.1029/2022GL101003.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Lengaigne, J. Vialard, J.-J. Luo, T. Yamagata, and G. Madec, 2014: Influence of Indian Ocean dipole and Pacific recharge on following year’s El Niño: Interdecadal robustness. Climate Dyn., 42, 291310, https://doi.org/10.1007/s00382-012-1628-1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., J. Vialard, H. Dayan, M. Lengaigne, and I. Suresh, 2016: A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean dipole and basin influences on El Niño. Climate Dyn., 46, 22472268, https://doi.org/10.1007/s00382-015-2700-4.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Khodri, M. Lengaigne, and I. Suresh, 2018: A subsurface Indian Ocean dipole response to tropical volcanic eruptions. Geophys. Res. Lett., 45, 91509159, https://doi.org/10.1029/2018GL078515.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Lengaigne, J. Vialard, I. Suresh, and Y. Planton, 2019: On the physical interpretation of the lead relation between warm water volume and the El Niño Southern Oscillation. Climate Dyn., 52, 29232942, https://doi.org/10.1007/s00382-018-4313-1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., J. Vialard, M. Lengaigne, and I. Suresh, 2020: Relevance of relative sea surface temperature for tropical rainfall interannual variability. Geophys. Res. Lett., 47, e2019GL086182, https://doi.org/10.1029/2019GL086182.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and S.-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992, https://doi.org/10.1029/1999GL002297.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble‐mean dynamics of the ENSO recharge oscillator under state‐dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., H.-C. Chen, S. Zhao, M. Hayashi, C. Karamperidou, M. F. Stuecker, R. Xie, and L. Geng, 2020: Simple ENSO models. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 119–151, https://doi.org/10.1002/9781119548164.ch6.

  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and Y. Kosaka, 2016: The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Climate Dyn., 47, 37373765, https://doi.org/10.1007/s00382-016-3039-1.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., M. Lengaigne, J. Vialard, T. Izumo, and A. Sen Gupta, 2016: Further insights on the influence of the Indian Ocean dipole on the following year’s ENSO from observations and CMIP5 models. J. Climate, 29, 637658, https://doi.org/10.1175/JCLI-D-15-0481.1.

    • Search Google Scholar
    • Export Citation
  • Keane, A., B. Krauskopf, and C. Postlethwaite, 2016: Investigating irregular behavior in a model for the El Niño Southern Oscillation with positive and negative delayed feedback. SIAM J. Appl. Dyn. Syst., 15, 16561689, https://doi.org/10.1137/16M1063605.

    • Search Google Scholar
    • Export Citation
  • Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23, 12261239, https://doi.org/10.1175/2009JCLI3293.1.

    • Search Google Scholar
    • Export Citation
  • Linz, M., E. Tziperman, and D. G. MacMartin, 2014: Process-based analysis of climate model ENSO simulations: Intermodel consistency and compensating errors. J. Geophys. Res. Atmos., 119, 73967409, https://doi.org/10.1002/2013JD021415.

    • Search Google Scholar
    • Export Citation
  • Lu, B., F.-F. Jin, and H.-L. Ren, 2018: A coupled dynamic index for ENSO periodicity. J. Climate, 31, 23612376, https://doi.org/10.1175/JCLI-D-17-0466.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, https://doi.org/10.1175/2009JCLI3104.1.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Jr., and Z. Yu, 1992: Equatorial dynamics in a 2 and 1/2-layer model. Prog. Oceanogr., 29, 61132, https://doi.org/10.1016/0079-6611(92)90003-I.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Jr., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, https://doi.org/10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., M. Lengaigne, P. Marchesiello, N. C. Jourdain, E. M. Vincent, J. Lefèvre, F. Chauvin, and J.-F. Royer, 2012: Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Climate Dyn., 38, 301321, https://doi.org/10.1007/s00382-011-1126-x.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2019: ENSO diversity from an atmospheric perspective. Curr. Climate Change Rep., 5, 245257, https://doi.org/10.1007/s40641-019-00138-7.

    • Search Google Scholar
    • Export Citation
  • Palanisamy, H., A. Cazenave, T. Delcroix, and B. Meyssignac, 2015: Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: The contribution of thermocline depth change and internal climate variability. Ocean Dyn., 65, 341356, https://doi.org/10.1007/s10236-014-0805-7.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., M. Ioualalen, C. Menkes, T. Delcroix, and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274, 14861489, https://doi.org/10.1126/science.274.5292.1486.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Search Google Scholar
    • Export Citation
  • Planton, Y., J. Vialard, E. Guilyardi, M. Lengaigne, and T. Izumo, 2018: Western Pacific oceanic heat content: A better predictor of La Niña than of El Niño. Geophys. Res. Lett., 45, 98249833, https://doi.org/10.1029/2018GL079341.

    • Search Google Scholar
    • Export Citation
  • Power, S. B., 2011: Simple analytic solutions of the linear delayed-action oscillator equation relevant to ENSO theory. Theor. Appl. Climatol., 104, 251259, https://doi.org/10.1007/s00704-010-0339-y.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rebert, J. P., J. R. Donguy, G. Eldin, and K. Wyrtki, 1985: Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. J. Geophys. Res., 90, 11 71911 725, https://doi.org/10.1029/JC090iC06p11719.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 65066523, https://doi.org/10.1175/JCLI-D-12-00601.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. Mcphaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Search Google Scholar
    • Export Citation
  • Shin, N.-Y., J.-S. Kug, M.-F. Stuecker, F.-F. Jin, A. Timmermann, and G. I. Kim, 2022: More frequent central Pacific El Niño and stronger eastern Pacific El Niño in a warmer climate. npj Climate Atmos. Sci., 5, 101, https://doi.org/10.1038/s41612-022-00324-9.

    • Search Google Scholar
    • Export Citation
  • Srinivas, G., J. Vialard, M. Lengaigne, T. Izumo, and E. Guilyardi, 2022: Relative contributions of sea surface temperature and atmospheric nonlinearities to ENSO asymmetrical rainfall response. J. Climate, 35, 37253745, https://doi.org/10.1175/JCLI-D-21-0257.1.

    • Search Google Scholar
    • Export Citation
  • Stellema, A., A. Sen Gupta, A. S. Taschetto, and M. Feng, 2022: Pacific equatorial undercurrent: Mean state, sources, and future changes across models. Front. Climate, 4, 933091, https://doi.org/10.3389/fclim.2022.933091.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540544, https://doi.org/10.1038/ngeo1826.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sullivan, A., J.-J. Luo, A. C. Hirst, D. Bi, W. Cai, and J. He, 2016: Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. Sci. Rep., 6, 38540, https://doi.org/10.1038/srep38540.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., C. Karamperidou, and B. Dewitte, 2019: A theoretical model of strong and moderate El Niño regimes. Climate Dyn., 52, 74777493, https://doi.org/10.1007/s00382-018-4100-z.

    • Search Google Scholar
    • Export Citation
  • Thual, S., and B. Dewitte,