Eastern Boundary Upwelling Systems in Ocean–Sea Ice Simulations Forced by CORE and JRA55-do: Mean State and Variability at the Surface

R. J. Small aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by R. J. Small in
Current site
Google Scholar
PubMed
Close
,
J. Kurian bDepartment of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by J. Kurian in
Current site
Google Scholar
PubMed
Close
,
P. Chang bDepartment of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by P. Chang in
Current site
Google Scholar
PubMed
Close
,
G. Xu bDepartment of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by G. Xu in
Current site
Google Scholar
PubMed
Close
,
H. Tsujino cJMA Meteorological Research Institute, Tsukuba, Japan

Search for other papers by H. Tsujino in
Current site
Google Scholar
PubMed
Close
,
S. Yeager aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. Yeager in
Current site
Google Scholar
PubMed
Close
,
G. Danabasoglu aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by G. Danabasoglu in
Current site
Google Scholar
PubMed
Close
,
W. M. Kim aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by W. M. Kim in
Current site
Google Scholar
PubMed
Close
,
A. Altuntas aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. Altuntas in
Current site
Google Scholar
PubMed
Close
, and
F. Castruccio aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by F. Castruccio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper we summarize improvements in climate model simulation of eastern boundary upwelling systems (EBUS) when changing the forcing dataset from the Coordinated Ocean-Ice Reference Experiments (CORE; ∼2° winds) to the higher-resolution Japanese 55-year Atmospheric Reanalysis for driving ocean–sea ice models (JRA55-do, ∼0.5°) and also due to refining ocean grid spacing from 1° to 0.1°. The focus is on sea surface temperature (SST), a key variable for climate studies, and which is typically too warm in climate model representation of EBUS. The change in forcing leads to a better-defined atmospheric low-level coastal jet, leading to more equatorward ocean flow and coastal upwelling, both in turn acting to reduce SST over the upwelling regions off the west coast of North America, Peru, and Chile. The refinement of ocean resolution then leads to narrower and stronger alongshore ocean flow and coastal upwelling, and the emergence of strong across-shore temperature gradients not seen with the coarse ocean model. Off northwest Africa the SST bias mainly improves with ocean resolution but not with forcing, while in the Benguela, JRA55-do with high-resolution ocean leads to lower SST but a substantial bias relative to observations remains. Reasons for the Benguela bias are discussed in the context of companion regional ocean model simulations. Finally, we address to what extent improvements in mean state lead to changes to the monthly to interannual variability. It is found that large-scale SST variability in EBUS on monthly and longer time scales is largely governed by teleconnections from climate modes and less sensitive to model resolution and forcing than the mean state.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Small, jsmall@ucar.edu

Abstract

In this paper we summarize improvements in climate model simulation of eastern boundary upwelling systems (EBUS) when changing the forcing dataset from the Coordinated Ocean-Ice Reference Experiments (CORE; ∼2° winds) to the higher-resolution Japanese 55-year Atmospheric Reanalysis for driving ocean–sea ice models (JRA55-do, ∼0.5°) and also due to refining ocean grid spacing from 1° to 0.1°. The focus is on sea surface temperature (SST), a key variable for climate studies, and which is typically too warm in climate model representation of EBUS. The change in forcing leads to a better-defined atmospheric low-level coastal jet, leading to more equatorward ocean flow and coastal upwelling, both in turn acting to reduce SST over the upwelling regions off the west coast of North America, Peru, and Chile. The refinement of ocean resolution then leads to narrower and stronger alongshore ocean flow and coastal upwelling, and the emergence of strong across-shore temperature gradients not seen with the coarse ocean model. Off northwest Africa the SST bias mainly improves with ocean resolution but not with forcing, while in the Benguela, JRA55-do with high-resolution ocean leads to lower SST but a substantial bias relative to observations remains. Reasons for the Benguela bias are discussed in the context of companion regional ocean model simulations. Finally, we address to what extent improvements in mean state lead to changes to the monthly to interannual variability. It is found that large-scale SST variability in EBUS on monthly and longer time scales is largely governed by teleconnections from climate modes and less sensitive to model resolution and forcing than the mean state.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Small, jsmall@ucar.edu

Supplementary Materials

    • Supplemental Materials (ZIP 16.767 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lazante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, J. S., 1973: Upwelling and coastal jets in a continuously stratified ocean. J. Phys. Oceanogr., 3, 245257, https://doi.org/10.1175/1520-0485(1973)003<0245:UACJIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., M. G. Jacox, J. Dias, M. A. Alexander, K. B. Karnauskas, J. D. Scott, and M. Gehne, 2022: Subseasonal-to-seasonal forecast skill in the California Current System and its connection to coastal Kelvin waves. J. Geophys. Res. Oceans, 127, e2021JC017892, https://doi.org/10.1029/2021JC017892.

    • Search Google Scholar
    • Export Citation
  • Bakun, A., 1973: Coastal upwelling indices, West Coast of North America, 1946–71. NOAA Tech. Rep. NMFS SSRF-671, 112 pp., https://spo.nmfs.noaa.gov/SSRF/SSRF671.pdf.

  • Bakun, A., 1990: Global climate change and intensification of coastal ocean upwelling. Science, 247, 198200, https://doi.org/10.1126/science.247.4939.198.

    • Search Google Scholar
    • Export Citation
  • Banzon, V. F., R. W. Reynolds, D. Stokes, and Y. Xue, 2014: A 1/4°-spatial-resolution daily sea surface temperature climatology based on a blended satellite and in situ analysis. J. Climate, 27, 82218228, https://doi.org/10.1175/JCLI-D-14-00293.1.

    • Search Google Scholar
    • Export Citation
  • Bograd, S. J., and Coauthors, 2023: Climate change impacts on eastern boundary upwelling systems. Annu. Rev. Mar. Sci., 15, 303328, https://doi.org/10.1146/annurev-marine-032122-021945.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 34143420, https://doi.org/10.1002/2015GL063306.

    • Search Google Scholar
    • Export Citation
  • Bonino, G., E. Di Lorenzo, S. Masina, and D. Iovino, 2019a: Interannual to decadal variability within and across the major eastern boundary upwelling systems. Sci. Rep., 9, 19949, https://doi.org/10.1038/s41598-019-56514-8.

    • Search Google Scholar
    • Export Citation
  • Bonino, G., S. Masina, D. Iovino, A. Storto, and H. Tsujino, 2019b: Eastern boundary upwelling systems response to different atmospheric forcing in a global eddy-permitting ocean model. J. Mar. Syst., 197, 103178, https://doi.org/10.1016/j.jmarsys.2019.05.004.

    • Search Google Scholar
    • Export Citation
  • Bordbar, M. H., V. Mohrholz, and M. Schmidt, 2021: The relation of wind-driven coastal and offshore upwelling in the Benguela upwelling system. J. Phys. Oceanogr., 51, 31173133, https://doi.org/10.1175/JPO-D-20-0297.1.

    • Search Google Scholar
    • Export Citation
  • Brady, R. X., M. A. Alexander, N. S. Lovenduski, and R. R. Rykaczewski, 2017: Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett., 44, 50445052, https://doi.org/10.1002/2017GL072945.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1983: The near-surface dynamics of coastal upwelling. Prog. Oceanogr., 12, 223257, https://doi.org/10.1016/0079-6611(83)90009-5.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., and S. Bachman, 2015: Isohaline salinity budget of the North Atlantic salinity maximum. J. Phys. Oceanogr., 45, 724736, https://doi.org/10.1175/JPO-D-14-0172.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X. J., P. Marchesiello, and J. C. McWilliams, 2004: Upwelling response to coastal wind profiles. Geophys. Res. Lett., 31, L13311, https://doi.org/10.1029/2004GL020123.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2020: An unprecedented set of high-resolution climate simulations from the International Laboratory for High-Resolution Earth System Prediction (iHESP). 2020 Fall Meeting, Online, Amer. Geophys. Union, Abstract #A097-01.

  • Chang, P., and Coauthors, 2023: Uncertain future of sustainable fisheries environment in eastern boundary upwelling zones under climate change. Commun. Earth Environ., 4, 19, https://doi.org/10.1038/s43247-023-00681-0.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1955: Generation of oceanic currents by wind. J. Mar. Res., 14, 477498.

  • Chassignet, E. P., and Coauthors, 2020: Impact of horizontal resolution on global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev., 13, 45954637, https://doi.org/10.5194/gmd-13-4595-2020.

    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., and M. Messie, 2009: A comparison of eastern boundary upwelling systems. Prog. Oceanogr., 83, 8096, https://doi.org/10.1016/j.pocean.2009.07.032.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and R. E. Davis, 1982: Monthly mean sea-level variability along the West Coast of North America. J. Phys. Oceanogr., 12, 757784, https://doi.org/10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495517, https://doi.org/10.1175/JPO3025.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., J. C. McWilliams, and L. Renault, 2021: Momentum governors of the California Undercurrent transport. J. Phys. Oceanogr., 51, 29152932, https://doi.org/10.1175/JPO-D-20-0234.1.

    • Search Google Scholar
    • Export Citation
  • Colas, F., X. Capet, J. C. McWilliams, and A. Shchepetkin, 2008: 1997–1998 El Niño off Peru: A numerical study. Prog. Oceanogr., 79, 138155, https://doi.org/10.1016/j.pocean.2008.10.015.

    • Search Google Scholar
    • Export Citation
  • Colberg, F., and C. J. C. Reason, 2006: A model study of the Angola Benguela Frontal Zone: Sensitivity to atmospheric forcing. Geophys. Res. Lett., 33, L19608, https://doi.org/10.1029/2006GL027463.

    • Search Google Scholar
    • Export Citation
  • Connolly, T. P., B. M. Hickey, I. Shulman, and R. E. Thomson, 2014: Coastal trapped waves, alongshore pressure gradients, and the California Undercurrent. J. Phys. Oceanogr., 44, 319342, https://doi.org/10.1175/JPO-D-13-095.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, and B. P. Briegleb, 2010: Climate impacts of parameterized Nordic Sea overflows. J. Geophys. Res., 115, C11005, https://doi.org/10.1029/2010JC006243.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Deppenmeier, A. L., and Coauthors, 2020: The effect of vertical ocean mixing on the tropical Atlantic in a coupled global climate model. Climate Dyn., 54, 50895109, https://doi.org/10.1007/s00382-020-05270-x.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., C. W. Fairall, D. E. Wolfe, L. Bariteau, and P. Zuidema, 2010: Surface flux observations on the southeastern tropical Pacific Ocean and attribution of SST errors in coupled ocean-atmosphere models. J. Climate, 23, 41524174, https://doi.org/10.1175/2010JCLI3411.1.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, https://doi.org/10.1038/nclimate3082.

    • Search Google Scholar
    • Export Citation
  • Ding, H., M. A. Alexander, and M. G. Jacox, 2021: Role of geostrophic currents in future changes of coastal upwelling in the California Current System. Geophys. Res. Lett., 48, e2020GL090768, https://doi.org/10.1029/2020GL090768.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., and D. Koračin, 2008: Response of the summer marine layer flow to an extreme California Coastal Bend. Mon. Wea. Rev., 136, 28942922, https://doi.org/10.1175/2007MWR2336.1.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from the combination of TOPEX/Poseidon and ERS‐1 and 2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and K. Hamilton, 1985: Atmospheric forcing of interannual variability in the northeast Pacific Ocean: Connections with El Niño. J. Geophys. Res., 90, 857868, https://doi.org/10.1029/JC090iC01p00857.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557578, https://doi.org/10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fennel, W., and H. U. Lass, 2007: On the impact of wind curls on coastal currents. J. Mar. Syst., 68, 128142, https://doi.org/10.1016/j.jmarsys.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Fennel, W., T. Junker, M. Schmidt, and V. Mohrholz, 2012: Response of the Benguela upwelling systems to spatial variations in the wind stress. Cont. Shelf Res., 45, 6577, https://doi.org/10.1016/j.csr.2012.06.004.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mém. Soc. Roy. Sci. Liège, 10, 141164.

  • Florenchie, P. J., R. E. Lutjeharms, C. J. C. Reason, S. Masson, and M. Rouault, 2003: The source of Benguela Niños in the South Atlantic Ocean. Geophys. Res. Lett., 30, 1505, https://doi.org/10.1029/2003GL017172.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Frischknecht, M., M. Münnich, and N. Gruber, 2015: Remote versus local influence of ENSO on the California Current System. J. Geophys. Res. Oceans, 120, 13531374, https://doi.org/10.1002/2014JC010531.

    • Search Google Scholar
    • Export Citation
  • Fu, D., and Coauthors, 2021: Introducing the new Regional Community Earth System Model, R-CESM. Bull. Amer. Meteor. Soc., 102, E1821E1843, https://doi.org/10.1175/BAMS-D-20-0024.1.

    • Search Google Scholar
    • Export Citation
  • García-Reyes, M., W. J. Sydeman, D. S. Schoeman, R. R. Rykaczewski, B. A. Black, A. J. Smit, and S. J. Bograd, 2015: Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci., 2, 109, https://doi.org/10.3389/fmars.2015.00109.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. C. Munoz, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133, 22462261, https://doi.org/10.1175/MWR2972.1.

    • Search Google Scholar
    • Export Citation
  • Gay, P. S., and T. K. Chereskin, 2009: Mean structure and seasonal variability of the poleward undercurrent off Southern California. J. Geophys. Res., 114, C02007, https://doi.org/10.1029/2008JC004886.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, https://doi.org/10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., M. R. Fewings, and M. García-Reyes, 2017: Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 Northeast Pacific marine heat wave. Geophys. Res. Lett., 44, 312319, https://doi.org/10.1002/2016GL071039.

    • Search Google Scholar
    • Export Citation
  • Goubanova, K., E. Sanchez-Gomez, C. Frauen, and A. Voldoire, 2019: Respective roles of remote and local wind stress forcings in the development of warm SST errors in the south-eastern tropical Atlantic in a coupled high-resolution model. Climate Dyn., 52, 13591382, https://doi.org/10.1007/s00382-018-4197-0.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26 (1–2), 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., J. A. Carton, S. Nigam, and Y. M. Okumura, 2012: Tropical Atlantic biases in CCSM4. J. Climate, 25, 36843701, https://doi.org/10.1175/JCLI-D-11-00315.1.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys., 227, 35953624, https://doi.org/10.1016/j.jcp.2007.06.016.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, https://doi.org/10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., and N. E. Pola, 1983: The seasonal alongshore pressure gradient on the West Coast of the United States. J. Geophys. Res., 88, 76237633, https://doi.org/10.1029/JC088iC12p07623.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos Sea ice model documentation and software user’s manual, version 5.1. Tech. Rep. LA-CC-06-012, 116 pp.

  • Huyer, A., P. A. Wheeler, P. T. Strub, R. L. Smith, R. Letelier, and P. M. Kosro, 2007: The Newport line off Oregon—Studies in the North East Pacific. Prog. Oceanogr., 75, 126160, https://doi.org/10.1016/j.pocean.2007.08.003.

    • Search Google Scholar
    • Export Citation
  • Illig, S., and M.-L. Bachèlery, 2019: Propagation of subseasonal equatorially-forced coastal trapped waves down to the Benguela upwelling system. Sci. Rep., 9, 5306, https://doi.org/10.1038/s41598-019-41847-1.

    • Search Google Scholar
    • Export Citation
  • Jacox, M. G., C. A. Edwards, E. L. Hazen, and S. J. Bograd, 2018: Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West Coast. J. Geophys. Res., 123, 73327350, https://doi.org/10.1029/2018JC014187.

    • Search Google Scholar
    • Export Citation
  • Jacox, M. G., M. A. Alexander, C. A. Stock, and G. Hervieux, 2019: On the skill of seasonal sea surface temperature forecasts in the California Current System and its connection to ENSO variability. Climate Dyn., 53, 75197533, https://doi.org/10.1007/s00382-017-3608-y.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. K., F. O. Bryan, S. A. Grodsky, and J. A. Carton, 2016: Climatological annual cycle of the salinity budgets of the subtropical maxima. J. Phys. Oceanogr., 46, 29812994, https://doi.org/10.1175/JPO-D-15-0202.1.

    • Search Google Scholar
    • Export Citation
  • Junker, T., M. Schmidt, and V. Mohrholz, 2015: The relation of wind stress curl and meridional transport in the Benguela upwelling system. J. Mar. Syst., 143, 16, https://doi.org/10.1016/j.jmarsys.2014.10.006.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlbert, 2007: A correction for land contamination of atmospheric variables near land–sea boundaries. J. Phys. Oceanogr., 37, 803818, https://doi.org/10.1175/JPO2984.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Koungue, R. A. I., M. Rouault, S. Illig, P. Brandt, and J. Jouanno, 2019: Benguela Niños and Benguela Niñas in forced ocean simulation from 1958 to 2015. J. Geophys. Res. Oceans, 124, 59235951, https://doi.org/10.1029/2019JC015013.

    • Search Google Scholar
    • Export Citation
  • Koungue, R. A. I., P. Brandt, J. Lübbecke, A. Prigent, M. S. Martins, and R. R. Rodrigues, 2021: The 2019 Benguela Niño. Front. Mar. Sci., 8, 800103, https://doi.org/10.3389/fmars.2021.800103.

    • Search Google Scholar
    • Export Citation
  • Kurian, J., P. Li, P. Chang, C. M. Patricola, and J. Small, 2021: Impact of the Benguela coastal low-level jet on the southeast tropical Atlantic SST bias in a regional ocean model. Climate Dyn., 56, 27732800, https://doi.org/10.1007/s00382-020-05616-5.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., https://doi.org/10.5065/D6KK98Q6.

  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19, 23252346, https://doi.org/10.1175/JCLI3740.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2012: On the observed trends and changes in global sea surface temperature and air–sea heat fluxes (1984–2006). J. Climate, 25, 61236135, https://doi.org/10.1175/JCLI-D-11-00148.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lass, H. U., and V. Mohrholz, 2008: On the interaction between the subtropical gyre and the subtropical cell on the shelf of the SE Atlantic. J. Mar. Syst., 74 (1–2), 143, https://doi.org/10.1016/j.jmarsys.2007.09.008.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2021: The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, https://doi.org/10.1016/j.ocemod.2011.11.007.