Eastern Boundary Upwelling Systems in Ocean–Sea Ice Simulations Forced by CORE and JRA55-do: Mean State and Variability at the Surface

R. J. Small aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by R. J. Small in
Current site
Google Scholar
PubMed
Close
,
J. Kurian bDepartment of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by J. Kurian in
Current site
Google Scholar
PubMed
Close
,
P. Chang bDepartment of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by P. Chang in
Current site
Google Scholar
PubMed
Close
,
G. Xu bDepartment of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by G. Xu in
Current site
Google Scholar
PubMed
Close
,
H. Tsujino cJMA Meteorological Research Institute, Tsukuba, Japan

Search for other papers by H. Tsujino in
Current site
Google Scholar
PubMed
Close
,
S. Yeager aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. Yeager in
Current site
Google Scholar
PubMed
Close
,
G. Danabasoglu aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by G. Danabasoglu in
Current site
Google Scholar
PubMed
Close
,
W. M. Kim aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by W. M. Kim in
Current site
Google Scholar
PubMed
Close
,
A. Altuntas aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. Altuntas in
Current site
Google Scholar
PubMed
Close
, and
F. Castruccio aClimate and Global Dynamics Laboratory, National Science Foundation National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by F. Castruccio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper we summarize improvements in climate model simulation of eastern boundary upwelling systems (EBUS) when changing the forcing dataset from the Coordinated Ocean-Ice Reference Experiments (CORE; ∼2° winds) to the higher-resolution Japanese 55-year Atmospheric Reanalysis for driving ocean–sea ice models (JRA55-do, ∼0.5°) and also due to refining ocean grid spacing from 1° to 0.1°. The focus is on sea surface temperature (SST), a key variable for climate studies, and which is typically too warm in climate model representation of EBUS. The change in forcing leads to a better-defined atmospheric low-level coastal jet, leading to more equatorward ocean flow and coastal upwelling, both in turn acting to reduce SST over the upwelling regions off the west coast of North America, Peru, and Chile. The refinement of ocean resolution then leads to narrower and stronger alongshore ocean flow and coastal upwelling, and the emergence of strong across-shore temperature gradients not seen with the coarse ocean model. Off northwest Africa the SST bias mainly improves with ocean resolution but not with forcing, while in the Benguela, JRA55-do with high-resolution ocean leads to lower SST but a substantial bias relative to observations remains. Reasons for the Benguela bias are discussed in the context of companion regional ocean model simulations. Finally, we address to what extent improvements in mean state lead to changes to the monthly to interannual variability. It is found that large-scale SST variability in EBUS on monthly and longer time scales is largely governed by teleconnections from climate modes and less sensitive to model resolution and forcing than the mean state.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Small, jsmall@ucar.edu

Abstract

In this paper we summarize improvements in climate model simulation of eastern boundary upwelling systems (EBUS) when changing the forcing dataset from the Coordinated Ocean-Ice Reference Experiments (CORE; ∼2° winds) to the higher-resolution Japanese 55-year Atmospheric Reanalysis for driving ocean–sea ice models (JRA55-do, ∼0.5°) and also due to refining ocean grid spacing from 1° to 0.1°. The focus is on sea surface temperature (SST), a key variable for climate studies, and which is typically too warm in climate model representation of EBUS. The change in forcing leads to a better-defined atmospheric low-level coastal jet, leading to more equatorward ocean flow and coastal upwelling, both in turn acting to reduce SST over the upwelling regions off the west coast of North America, Peru, and Chile. The refinement of ocean resolution then leads to narrower and stronger alongshore ocean flow and coastal upwelling, and the emergence of strong across-shore temperature gradients not seen with the coarse ocean model. Off northwest Africa the SST bias mainly improves with ocean resolution but not with forcing, while in the Benguela, JRA55-do with high-resolution ocean leads to lower SST but a substantial bias relative to observations remains. Reasons for the Benguela bias are discussed in the context of companion regional ocean model simulations. Finally, we address to what extent improvements in mean state lead to changes to the monthly to interannual variability. It is found that large-scale SST variability in EBUS on monthly and longer time scales is largely governed by teleconnections from climate modes and less sensitive to model resolution and forcing than the mean state.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Small, jsmall@ucar.edu

Supplementary Materials

    • Supplemental Materials (ZIP 16.767 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lazante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, J. S., 1973: Upwelling and coastal jets in a continuously stratified ocean. J. Phys. Oceanogr., 3, 245257, https://doi.org/10.1175/1520-0485(1973)003<0245:UACJIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., M. G. Jacox, J. Dias, M. A. Alexander, K. B. Karnauskas, J. D. Scott, and M. Gehne, 2022: Subseasonal-to-seasonal forecast skill in the California Current System and its connection to coastal Kelvin waves. J. Geophys. Res. Oceans, 127, e2021JC017892, https://doi.org/10.1029/2021JC017892.

    • Search Google Scholar
    • Export Citation
  • Bakun, A., 1973: Coastal upwelling indices, West Coast of North America, 1946–71. NOAA Tech. Rep. NMFS SSRF-671, 112 pp., https://spo.nmfs.noaa.gov/SSRF/SSRF671.pdf.

  • Bakun, A., 1990: Global climate change and intensification of coastal ocean upwelling. Science, 247, 198200, https://doi.org/10.1126/science.247.4939.198.

    • Search Google Scholar
    • Export Citation
  • Banzon, V. F., R. W. Reynolds, D. Stokes, and Y. Xue, 2014: A 1/4°-spatial-resolution daily sea surface temperature climatology based on a blended satellite and in situ analysis. J. Climate, 27, 82218228, https://doi.org/10.1175/JCLI-D-14-00293.1.

    • Search Google Scholar
    • Export Citation
  • Bograd, S. J., and Coauthors, 2023: Climate change impacts on eastern boundary upwelling systems. Annu. Rev. Mar. Sci., 15, 303328, https://doi.org/10.1146/annurev-marine-032122-021945.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 34143420, https://doi.org/10.1002/2015GL063306.

    • Search Google Scholar
    • Export Citation
  • Bonino, G., E. Di Lorenzo, S. Masina, and D. Iovino, 2019a: Interannual to decadal variability within and across the major eastern boundary upwelling systems. Sci. Rep., 9, 19949, https://doi.org/10.1038/s41598-019-56514-8.

    • Search Google Scholar
    • Export Citation
  • Bonino, G., S. Masina, D. Iovino, A. Storto, and H. Tsujino, 2019b: Eastern boundary upwelling systems response to different atmospheric forcing in a global eddy-permitting ocean model. J. Mar. Syst., 197, 103178, https://doi.org/10.1016/j.jmarsys.2019.05.004.

    • Search Google Scholar
    • Export Citation
  • Bordbar, M. H., V. Mohrholz, and M. Schmidt, 2021: The relation of wind-driven coastal and offshore upwelling in the Benguela upwelling system. J. Phys. Oceanogr., 51, 31173133, https://doi.org/10.1175/JPO-D-20-0297.1.

    • Search Google Scholar
    • Export Citation
  • Brady, R. X., M. A. Alexander, N. S. Lovenduski, and R. R. Rykaczewski, 2017: Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett., 44, 50445052, https://doi.org/10.1002/2017GL072945.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1983: The near-surface dynamics of coastal upwelling. Prog. Oceanogr., 12, 223257, https://doi.org/10.1016/0079-6611(83)90009-5.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., and S. Bachman, 2015: Isohaline salinity budget of the North Atlantic salinity maximum. J. Phys. Oceanogr., 45, 724736, https://doi.org/10.1175/JPO-D-14-0172.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X. J., P. Marchesiello, and J. C. McWilliams, 2004: Upwelling response to coastal wind profiles. Geophys. Res. Lett., 31, L13311, https://doi.org/10.1029/2004GL020123.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2020: An unprecedented set of high-resolution climate simulations from the International Laboratory for High-Resolution Earth System Prediction (iHESP). 2020 Fall Meeting, Online, Amer. Geophys. Union, Abstract #A097-01.

  • Chang, P., and Coauthors, 2023: Uncertain future of sustainable fisheries environment in eastern boundary upwelling zones under climate change. Commun. Earth Environ., 4, 19, https://doi.org/10.1038/s43247-023-00681-0.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1955: Generation of oceanic currents by wind. J. Mar. Res., 14, 477498.

  • Chassignet, E. P., and Coauthors, 2020: Impact of horizontal resolution on global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev., 13, 45954637, https://doi.org/10.5194/gmd-13-4595-2020.

    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., and M. Messie, 2009: A comparison of eastern boundary upwelling systems. Prog. Oceanogr., 83, 8096, https://doi.org/10.1016/j.pocean.2009.07.032.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and R. E. Davis, 1982: Monthly mean sea-level variability along the West Coast of North America. J. Phys. Oceanogr., 12, 757784, https://doi.org/10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495517, https://doi.org/10.1175/JPO3025.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., J. C. McWilliams, and L. Renault, 2021: Momentum governors of the California Undercurrent transport. J. Phys. Oceanogr., 51, 29152932, https://doi.org/10.1175/JPO-D-20-0234.1.

    • Search Google Scholar
    • Export Citation
  • Colas, F., X. Capet, J. C. McWilliams, and A. Shchepetkin, 2008: 1997–1998 El Niño off Peru: A numerical study. Prog. Oceanogr., 79, 138155, https://doi.org/10.1016/j.pocean.2008.10.015.

    • Search Google Scholar
    • Export Citation
  • Colberg, F., and C. J. C. Reason, 2006: A model study of the Angola Benguela Frontal Zone: Sensitivity to atmospheric forcing. Geophys. Res. Lett., 33, L19608, https://doi.org/10.1029/2006GL027463.

    • Search Google Scholar
    • Export Citation
  • Connolly, T. P., B. M. Hickey, I. Shulman, and R. E. Thomson, 2014: Coastal trapped waves, alongshore pressure gradients, and the California Undercurrent. J. Phys. Oceanogr., 44, 319342, https://doi.org/10.1175/JPO-D-13-095.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, and B. P. Briegleb, 2010: Climate impacts of parameterized Nordic Sea overflows. J. Geophys. Res., 115, C11005, https://doi.org/10.1029/2010JC006243.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Deppenmeier, A. L., and Coauthors, 2020: The effect of vertical ocean mixing on the tropical Atlantic in a coupled global climate model. Climate Dyn., 54, 50895109, https://doi.org/10.1007/s00382-020-05270-x.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., C. W. Fairall, D. E. Wolfe, L. Bariteau, and P. Zuidema, 2010: Surface flux observations on the southeastern tropical Pacific Ocean and attribution of SST errors in coupled ocean-atmosphere models. J. Climate, 23, 41524174, https://doi.org/10.1175/2010JCLI3411.1.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, https://doi.org/10.1038/nclimate3082.

    • Search Google Scholar
    • Export Citation
  • Ding, H., M. A. Alexander, and M. G. Jacox, 2021: Role of geostrophic currents in future changes of coastal upwelling in the California Current System. Geophys. Res. Lett., 48, e2020GL090768, https://doi.org/10.1029/2020GL090768.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., and D. Koračin, 2008: Response of the summer marine layer flow to an extreme California Coastal Bend. Mon. Wea. Rev., 136, 28942922, https://doi.org/10.1175/2007MWR2336.1.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from the combination of TOPEX/Poseidon and ERS‐1 and 2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and K. Hamilton, 1985: Atmospheric forcing of interannual variability in the northeast Pacific Ocean: Connections with El Niño. J. Geophys. Res., 90, 857868, https://doi.org/10.1029/JC090iC01p00857.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557578, https://doi.org/10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fennel, W., and H. U. Lass, 2007: On the impact of wind curls on coastal currents. J. Mar. Syst., 68, 128142, https://doi.org/10.1016/j.jmarsys.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Fennel, W., T. Junker, M. Schmidt, and V. Mohrholz, 2012: Response of the Benguela upwelling systems to spatial variations in the wind stress. Cont. Shelf Res., 45, 6577, https://doi.org/10.1016/j.csr.2012.06.004.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mém. Soc. Roy. Sci. Liège, 10, 141164.

  • Florenchie, P. J., R. E. Lutjeharms, C. J. C. Reason, S. Masson, and M. Rouault, 2003: The source of Benguela Niños in the South Atlantic Ocean. Geophys. Res. Lett., 30, 1505, https://doi.org/10.1029/2003GL017172.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Frischknecht, M., M. Münnich, and N. Gruber, 2015: Remote versus local influence of ENSO on the California Current System. J. Geophys. Res. Oceans, 120, 13531374, https://doi.org/10.1002/2014JC010531.

    • Search Google Scholar
    • Export Citation
  • Fu, D., and Coauthors, 2021: Introducing the new Regional Community Earth System Model, R-CESM. Bull. Amer. Meteor. Soc., 102, E1821E1843, https://doi.org/10.1175/BAMS-D-20-0024.1.

    • Search Google Scholar
    • Export Citation
  • García-Reyes, M., W. J. Sydeman, D. S. Schoeman, R. R. Rykaczewski, B. A. Black, A. J. Smit, and S. J. Bograd, 2015: Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci., 2, 109, https://doi.org/10.3389/fmars.2015.00109.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. C. Munoz, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133, 22462261, https://doi.org/10.1175/MWR2972.1.

    • Search Google Scholar
    • Export Citation
  • Gay, P. S., and T. K. Chereskin, 2009: Mean structure and seasonal variability of the poleward undercurrent off Southern California. J. Geophys. Res., 114, C02007, https://doi.org/10.1029/2008JC004886.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, https://doi.org/10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., M. R. Fewings, and M. García-Reyes, 2017: Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 Northeast Pacific marine heat wave. Geophys. Res. Lett., 44, 312319, https://doi.org/10.1002/2016GL071039.

    • Search Google Scholar
    • Export Citation
  • Goubanova, K., E. Sanchez-Gomez, C. Frauen, and A. Voldoire, 2019: Respective roles of remote and local wind stress forcings in the development of warm SST errors in the south-eastern tropical Atlantic in a coupled high-resolution model. Climate Dyn., 52, 13591382, https://doi.org/10.1007/s00382-018-4197-0.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26 (1–2), 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., J. A. Carton, S. Nigam, and Y. M. Okumura, 2012: Tropical Atlantic biases in CCSM4. J. Climate, 25, 36843701, https://doi.org/10.1175/JCLI-D-11-00315.1.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys., 227, 35953624, https://doi.org/10.1016/j.jcp.2007.06.016.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, https://doi.org/10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., and N. E. Pola, 1983: The seasonal alongshore pressure gradient on the West Coast of the United States. J. Geophys. Res., 88, 76237633, https://doi.org/10.1029/JC088iC12p07623.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos Sea ice model documentation and software user’s manual, version 5.1. Tech. Rep. LA-CC-06-012, 116 pp.

  • Huyer, A., P. A. Wheeler, P. T. Strub, R. L. Smith, R. Letelier, and P. M. Kosro, 2007: The Newport line off Oregon—Studies in the North East Pacific. Prog. Oceanogr., 75, 126160, https://doi.org/10.1016/j.pocean.2007.08.003.

    • Search Google Scholar
    • Export Citation
  • Illig, S., and M.-L. Bachèlery, 2019: Propagation of subseasonal equatorially-forced coastal trapped waves down to the Benguela upwelling system. Sci. Rep., 9, 5306, https://doi.org/10.1038/s41598-019-41847-1.

    • Search Google Scholar
    • Export Citation
  • Jacox, M. G., C. A. Edwards, E. L. Hazen, and S. J. Bograd, 2018: Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West Coast. J. Geophys. Res., 123, 73327350, https://doi.org/10.1029/2018JC014187.

    • Search Google Scholar
    • Export Citation
  • Jacox, M. G., M. A. Alexander, C. A. Stock, and G. Hervieux, 2019: On the skill of seasonal sea surface temperature forecasts in the California Current System and its connection to ENSO variability. Climate Dyn., 53, 75197533, https://doi.org/10.1007/s00382-017-3608-y.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. K., F. O. Bryan, S. A. Grodsky, and J. A. Carton, 2016: Climatological annual cycle of the salinity budgets of the subtropical maxima. J. Phys. Oceanogr., 46, 29812994, https://doi.org/10.1175/JPO-D-15-0202.1.

    • Search Google Scholar
    • Export Citation
  • Junker, T., M. Schmidt, and V. Mohrholz, 2015: The relation of wind stress curl and meridional transport in the Benguela upwelling system. J. Mar. Syst., 143, 16, https://doi.org/10.1016/j.jmarsys.2014.10.006.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlbert, 2007: A correction for land contamination of atmospheric variables near land–sea boundaries. J. Phys. Oceanogr., 37, 803818, https://doi.org/10.1175/JPO2984.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Koungue, R. A. I., M. Rouault, S. Illig, P. Brandt, and J. Jouanno, 2019: Benguela Niños and Benguela Niñas in forced ocean simulation from 1958 to 2015. J. Geophys. Res. Oceans, 124, 59235951, https://doi.org/10.1029/2019JC015013.

    • Search Google Scholar
    • Export Citation
  • Koungue, R. A. I., P. Brandt, J. Lübbecke, A. Prigent, M. S. Martins, and R. R. Rodrigues, 2021: The 2019 Benguela Niño. Front. Mar. Sci., 8, 800103, https://doi.org/10.3389/fmars.2021.800103.

    • Search Google Scholar
    • Export Citation
  • Kurian, J., P. Li, P. Chang, C. M. Patricola, and J. Small, 2021: Impact of the Benguela coastal low-level jet on the southeast tropical Atlantic SST bias in a regional ocean model. Climate Dyn., 56, 27732800, https://doi.org/10.1007/s00382-020-05616-5.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., https://doi.org/10.5065/D6KK98Q6.

  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19, 23252346, https://doi.org/10.1175/JCLI3740.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2012: On the observed trends and changes in global sea surface temperature and air–sea heat fluxes (1984–2006). J. Climate, 25, 61236135, https://doi.org/10.1175/JCLI-D-11-00148.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lass, H. U., and V. Mohrholz, 2008: On the interaction between the subtropical gyre and the subtropical cell on the shelf of the SE Atlantic. J. Mar. Syst., 74 (1–2), 143, https://doi.org/10.1016/j.jmarsys.2007.09.008.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2021: The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, https://doi.org/10.1016/j.ocemod.2011.11.007.

    • Search Google Scholar
    • Export Citation
  • Lythe, M. B., D. G. Vaughan, and BEDMAP Consortium, 2000: BEDMAP—Bed topography of the Antarctic. 1:10,000,000 scale map. BAS (Misc) 9. British Antarctic Survey.

  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean-atmosphere GCM study. J. Climate, 9, 16351645, https://doi.org/10.1175/1520-0442(1996)009<1635:PSCATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3 (1–2), 120, https://doi.org/10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33, 753783, https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and S.-Y. Chao, 1987: On the dynamics of the California Current System. J. Mar. Res., 45 (1), 132, https://doi.org/10.1357/002224087788400945.

    • Search Google Scholar
    • Export Citation
  • Mohrholz, V., M. Schmidt, J. Lutjeharms, and H.-C. John, 2001: The hydrography and dynamics of the Angola-Benguela frontal zone in April 1999. S. Afr. J. Sci., 97, 199208.

    • Search Google Scholar
    • Export Citation
  • Mohrholz, V., A. Eggert, T. Junker, G. Nausch, T. Ohde, and M. Schmidt, 2014: Cross shelf hydrographic and hydrochemical conditions and their short-term variability at the Northern Benguela during a normal upwelling season. J. Mar. Syst., 140, 92110, https://doi.org/10.1016/j.jmarsys.2014.04.019.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2010: A low-level jet along the Benguela coast, an integral part of the Benguela Current ecosystem. Climatic Change, 99, 613624, https://doi.org/10.1007/s10584-009-9678-z.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2000: Forcing of the summertime low-level jet along the California coast. J. Appl. Meteor., 39, 24212433, https://doi.org/10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and P. Chang, 2017: Structure and dynamics of the Benguela low-level coastal jet. Climate Dyn., 49, 27652788, https://doi.org/10.1007/s00382-016-3479-7.

    • Search Google Scholar
    • Export Citation
  • Pauly, D., and V. Christensen, 1995: Primary production required to sustain global fisheries. Nature, 374, 255257, https://doi.org/10.1038/374255a0.

    • Search Google Scholar
    • Export Citation
  • Penven, P., V. Echevin, J. Pasapera, F. Colas, and J. Tam, 2005: Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res., 110, C10021, https://doi.org/10.1029/2005JC002945.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., and J.-H. Yoon, 1982: Eastern boundary currents and coastal upwelling. J. Phys. Oceanogr., 12, 862879, https://doi.org/10.1175/1520-0485(1982)012<0862:EBCACU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pickett, M. H., and J. D. Paduan, 2003: Ekman transport and pumping in the California Current based on the U.S. Navy’s high resolution atmospheric model (COAMPS). J. Geophys. Res., 108, 3327, https://doi.org/10.1029/2003JC001902.

    • Search Google Scholar
    • Export Citation
  • Pozo Buil, M., and Coauthors, 2021: A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci., 8, 612874, https://doi.org/10.3389/fmars.2021.612874.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., J. L. McClean, C. A. Collins, A. J. Semtner, and K. A. S. Hays, 1997: Observations and modeling of the 1991–1992 El Niño signal off central California. J. Geophys. Res., 102, 55535582, https://doi.org/10.1029/96JC03050.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., D. B. Chelton, J. Roberts-Jones, M. J. Martin, D. Menemenlis, and C. J. Merchant, 2013: Objective determination of feature resolution in two sea surface temperature analyses. J. Climate, 26, 25142533, https://doi.org/10.1175/JCLI-D-12-00787.1.

    • Search Google Scholar
    • Export Citation
  • Richter, I., 2015: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Wiley Interdiscip. Rev.: Climate Change, 6, 345358, https://doi.org/10.1002/wcc.338.

    • Search Google Scholar
    • Export Citation
  • Richter, I., S. K. Behera, Y. Masumoto, B. Taguchi, N. Komori, and T. Yamagata, 2010: On the triggering of Benguela Niños: Remote equatorial versus local influences. Geophys. Res. Lett., 37, L20604, https://doi.org/10.1029/2010GL044461.

    • Search Google Scholar
    • Export Citation
  • Richter, I., S.-P. Xie, A. T. Wittenberg, and Y. Masumoto, 2012: Tropical Atlantic biases and their relationship to surface wind stress and terrestrial precipitation. Climate Dyn., 38, 9851001, https://doi.org/10.1007/s00382-011-1038-9.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, https://doi.org/10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., 2012: Bi-annual intrusion of tropical water in the northern Benguela upwelling. Geophys. Res. Lett., 39, L12606, https://doi.org/10.1029/2012GL052099.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., S. Illig, C. Bartholomae, C. J. C. Reason, and A. Bentamy, 2007: Propagation and origin of warm anomalies in the Angola Benguela upwelling system in 2001. J. Mar. Syst., 68, 473488, https://doi.org/10.1016/j.jmarsys.2006.11.010.

    • Search Google Scholar
    • Export Citation
  • Rykaczewski, R. R., and D. M. Checkley, 2008: Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. USA, 105, 19651970, https://doi.org/10.1073/pnas.0711777105.

    • Search Google Scholar
    • Export Citation
  • Rykaczewski, R. R., J. P. Dunne, W. J. Sydeman, M. García-Reyes, B. A. Black, and S. J. Bograd, 2015: Poleward displacement of coastal upwelling‐favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett., 42, 64246431, https://doi.org/10.1002/2015GL064694.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Supercritical marine-layer flow along a smoothly varying coastline. J. Atmos. Sci., 49, 15711584, https://doi.org/10.1175/1520-0469(1992)049<1571:SMLFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., S. E. Zebiak, and M. A. Cane, 1988: A model of the tropical Pacific sea surface temperature climatology. J. Geophys. Res., 93, 12651280, https://doi.org/10.1029/JC093iC02p01265.

    • Search Google Scholar
    • Export Citation
  • Shaffer, G., O. Pizarro, L. Djurfeldt, S. Salinas, and J. Rutllant, 1997: Circulation and low-frequency variability near the Chile coast: Remotely forced fluctuations during the 1991–92 El Niño. J. Phys. Oceanogr., 27, 217235, https://doi.org/10.1175/1520-0485(1997)027<0217:CALFVN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shannon, L. V., J. J. Agenbag, and M. E. L. Buys, 1987: Large and mesoscale features of the Angola-Benguela Front. S. Afr. J. Mar. Sci., 5, 1134, https://doi.org/10.2989/025776187784522261.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography-following coordinates ocean model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary (for Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624). J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Siegfried, L., M. Schmidt, V. Mohrholz, H. Pogrzeba, P. Nardini, M. Böttinger, and G. Scheuermann, 2019: The tropical-subtropical coupling in the southeast Atlantic from the perspective of the northern Benguela upwelling system. PLOS ONE, 14, e0210083, https://doi.org/10.1371/journal.pone.0210083.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., 1984: A simple model of the 1982–1983 Californian El Niño. Geophys. Res. Lett., 11, 237240, https://doi.org/10.1029/GL011i003p00237.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., E. Curchitser, K. Hedstrom, B. Kauffman, and W. G. Large, 2015: The Benguela upwelling system: Quantifying the sensitivity to resolution and coastal wind representation in a global climate model. J. Climate, 28, 94099432, https://doi.org/10.1175/JCLI-D-15-0192.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual. Tech. Rep. LAUR-10-01853, 141 pp., https://www2.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf.

  • Strub, P. T., and C. James, 2002: The 1997–1998 oceanic El Niño signal along the southeast and northeast Pacific boundaries—An altimetric view. Prog. Oceanogr., 54, 439458, https://doi.org/10.1016/S0079-6611(02)00063-0.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H., 1947: Wind-driven currents in a baroclinic ocean: With application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Search Google Scholar
    • Export Citation
  • Taboada, F., C. A. Stock, S. M. Griffies, J. Dunne, J. G. John, R. J. Small, and H. Tsujino, 2019: Surface winds from atmospheric reanalysis lead to contrasting oceanic forcing and coastal upwelling patterns. Ocean Modell., 133, 79111, https://doi.org/10.1016/j.ocemod.2018.11.003.

    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., 2010: Climate variability in the South-eastern tropical Pacific and its relation with ENSO: A GCM study. Climate Dyn., 34, 10931114, https://doi.org/10.1007/s00382-009-0602-z.

    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and S. Woolnough, 2014: Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Climate Dyn., 43, 28892913, https://doi.org/10.1007/s00382-013-1691-2.

    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., C. R. Mechoso, L. C. Shaffrey, and J. M. Slingo, 2010: Upper-ocean heat budget and ocean eddy transport in the South-East Pacific in a high-resolution coupled model. Climate Dyn., 35, 13091329, https://doi.org/10.1007/s00382-009-0703-8.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2020: Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP2). Geosci. Model Dev., 13, 36433708, https://doi.org/10.5194/gmd-13-3643-2020.

    • Search Google Scholar
    • Export Citation
  • Veitch, J., P. Penven, and F. Shillington, 2010: Modelling equilibrium dynamics of the Benguela Current System. J. Phys. Oceanogr., 40, 19421964, https://doi.org/10.1175/2010JPO4382.1.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2019: Role of wind stress in driving SST biases in the tropical Atlantic. Climate Dyn., 53, 34813504, https://doi.org/10.1007/s00382-019-04717-0.

    • Search Google Scholar
    • Export Citation
  • Wahl, S., M. Latif, W. Park, and N. Keenlyside, 2011: On the tropical Atlantic SST warm bias in the Kiel climate model. Climate Dyn., 36, 891906, https://doi.org/10.1007/s00382-009-0690-9.

    • Search Google Scholar
    • Export Citation
  • Wang, D., T. C. Gouhier, B. A. Menge, and A. R. Ganguly, 2015: Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518, 390394, https://doi.org/10.1038/nature14235.

    • Search Google Scholar
    • Export Citation
  • Winant, C. D., C. E. Dorman, C. A. Friehe, and R. C. Beardsley, 1988: The marine layer off Northern California: An example of supercritical channel flow. J. Atmos. Sci., 45, 35883605, https://doi.org/10.1175/1520-0469(1988)045<3588:TMLONC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2011: The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69, 417434, https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=1309&context=journal_of_marine_research.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., M. Li, C. M. Patricola, and P. Chang, 2014a: Oceanic origin of southeast tropical Atlantic biases. Climate Dyn., 43, 29152930, https://doi.org/10.1007/s00382-013-1901-y.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., P. Chang, I. Richter, W. Kim, and G. Tang, 2014b: Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble. Climate Dyn., 43, 31233145, https://doi.org/10.1007/s00382-014-2247-9.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., 2015: Topographic coupling of the Atlantic overturning and gyre circulations. J. Phys. Oceanogr., 45, 12581284, https://doi.org/10.1175/JPO-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Yoshida, K., 1955: Coastal upwelling off the California coast. Rec. Oceanogr. Works Japan, 2, 820.

  • Zemba, J., and C. A. Friehe, 1987: The marine atmospheric boundary layer jet in the Coastal Ocean Dynamics Experiment. J. Geophys. Res., 92, 14891496, https://doi.org/10.1029/JC092iC02p01489.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2016: Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bull. Amer. Meteor. Soc., 97, 23052328, https://doi.org/10.1175/BAMS-D-15-00274.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2658 2260 79
Full Text Views 1018 857 702
PDF Downloads 365 162 30