The Changing Nature of Convection over Earth’s Tropical Oceans from a Water Budget Perspective

Nicolas M. Leitmann-Niimi NASA Goddard Institute for Space Studies, New York, New York
Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Nicolas M. Leitmann-Niimi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3759-3263
,
Christian D. Kummerow Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
,
Wei-Ting Hsiao Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Wei-Ting Hsiao in
Current site
Google Scholar
PubMed
Close
, and
Eric D. Maloney Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Eric D. Maloney in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The water budget components of an atmospheric column are precipitation, evaporation, and horizontal water vapor divergence. This study finds that when precipitation from the Global Precipitation Climatology Project (GPCP), evaporation from the SeaFlux product, and water vapor divergence from ERA5 are employed, the degree of budget closure depends strongly on the location and time period. Variations in this error are not random, and this study seeks to better understand these biases as the climate system evolves. Errors are particularly significant over ocean regions in and near the west Pacific warm pool, where there are multiyear budget residuals of roughly 10% of the magnitude of precipitation. Biases in other tropical ocean basins are more seasonal and smaller in magnitude. Time-varying budget errors are strongly linked to variations in convective organization that vary with the large-scale environment; errors correlating with deep organized rain show coefficients of 0.62 and 0.56 in the west Pacific and central Pacific, respectively. Errors are linked to a lesser extent with cloud microphysical structures in the East Indian. Both factors affect rainfall retrievals through well-known precipitation bias mechanisms (beam-filling, convective/stratiform effects). Characteristics of the large-scale environment that produce changes in convective organization and precipitable ice water content are explored.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicolas M. Leitmann-Niimi, nml2179@columbia.edu

Abstract

The water budget components of an atmospheric column are precipitation, evaporation, and horizontal water vapor divergence. This study finds that when precipitation from the Global Precipitation Climatology Project (GPCP), evaporation from the SeaFlux product, and water vapor divergence from ERA5 are employed, the degree of budget closure depends strongly on the location and time period. Variations in this error are not random, and this study seeks to better understand these biases as the climate system evolves. Errors are particularly significant over ocean regions in and near the west Pacific warm pool, where there are multiyear budget residuals of roughly 10% of the magnitude of precipitation. Biases in other tropical ocean basins are more seasonal and smaller in magnitude. Time-varying budget errors are strongly linked to variations in convective organization that vary with the large-scale environment; errors correlating with deep organized rain show coefficients of 0.62 and 0.56 in the west Pacific and central Pacific, respectively. Errors are linked to a lesser extent with cloud microphysical structures in the East Indian. Both factors affect rainfall retrievals through well-known precipitation bias mechanisms (beam-filling, convective/stratiform effects). Characteristics of the large-scale environment that produce changes in convective organization and precipitable ice water content are explored.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicolas M. Leitmann-Niimi, nml2179@columbia.edu
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, https://doi.org/10.1175/JAMC-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, N. G. Loeb, M. D. Palmer, M. Roberts, D. Smith, and P.-L. Vidale, 2014: Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett., 41, 55885597, https://doi.org/10.1002/2014GL060962.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., S.-P. Xie, A. J. Miller, and M. J. McPhaden, 2015: Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J. Geophys. Res. Oceans, 120, 67826798, https://doi.org/10.1002/2015JC010906.

    • Search Google Scholar
    • Export Citation
  • Brown, P. J., and C. D. Kummerow, 2014: An assessment of atmospheric water budget components over tropical oceans. J. Climate, 27, 20542071, https://doi.org/10.1175/JCLI-D-13-00385.1.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., J. B. Roberts, and A. S. Bogdanoff, 2015: The SeaFlux turbulent flux dataset version 1.0 documentation. SeaFlux Documentation Version 1.2, 5 pp., https://ntrs.nasa.gov/api/citations/20120004203/downloads/20120004203.pdf.

  • Clayson, C. A., J. Brown, and NOAA CDR Program, 2016: NOAA climate data record Ocean Surface Bundle (OSB) Climate Data Record (CDR) of ocean near surface atmospheric properties, version 2. NOAA National Center for Environmental Information, accessed 25 March 2022, https://doi.org/10.7289/V55T3HH0.

  • Dines, W. H., 1917: The heat balance of the atmosphere. Quart. J. Roy. Meteor. Soc., 43, 151158, https://doi.org/10.1002/qj.49704318203.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., C. D. Kummerow, T. S. L’Ecuyer, Y. N. Takayabu, and S. Shige, 2010: Observed self-similarity of precipitation regimes over the tropical oceans. J. Climate, 23, 26862698, https://doi.org/10.1175/2010JCLI3330.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 tavgM_2d_flx_Nx: 2d, monthly mean, time-averaged, single-level, assimilation, surface flux diagnostics V5.12.4. GES DISC, accessed 14 October 2022, https://doi.org/10.5067/0JRLVL8YV2Y4.

  • Gutenstein, M., K. Fennig, M. Schröder, T. Trent, S. Bakan, J. B. Roberts, and F. R. Robertson, 2021: Intercomparison of freshwater fluxes over ocean and investigations into water budget closure. Hydrol. Earth Syst. Sci., 25, 121146, https://doi.org/10.5194/hess-25-121-2021.

    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., C. D. Kummerow, and D. A. Marks, 2017a: Sensitivity of rain-rate estimates related to convective organization: Observations from the Kwajalein, RMI, radar. J. Appl. Meteor. Climatol., 56, 10991119, https://doi.org/10.1175/JAMC-D-16-0218.1.

    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., C. D. Kummerow, D. A. Marks, and W. Berg, 2017b: A regime-based evaluation of TRMM oceanic precipitation biases. J. Atmos. Oceanic Technol., 34, 26132635, https://doi.org/10.1175/JTECH-D-16-0244.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1994: Cloud Dynamics. Academic Press, 573 pp.

  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., A. Behrangi, D. T. Bolvin, and E. J. Nelkin, 2022a: GPCP version 3.2 Satellite-Gauge (SG) combined precipitation data set. GES DISC, accessed 1 March 2022, https://doi.org/10.5067/MEASURES/GPCP/DATA304.

  • Huffman, G. J., A. Behrangi, D. T. Bolvin, and E. J. Nelkin, 2022b: GPCP V3.2 release notes. GES DISC, 8 pp., https://docserver.gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/Release_Notes.GPCPV3.2.pdf.

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kato, S., K.-M. Xu, T. Wong, N. G. Loeb, F. G. Rose, K. E. Trenberth, and T. J. Thorsen, 2016: Investigation of the residual in column-integrated atmospheric energy balance using cloud objects. J. Climate, 29, 74357452, https://doi.org/10.1175/JCLI-D-15-0782.1.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208, https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koeritzer, D. W., 2021: Trends in regional atmospheric water cycles across ocean basins diagnosed using multiple products. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 79 pp.

  • L’Ecuyer, T. S., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., A. Simmons, F. Vamborg, and M. J. Rodwell, 2022: An evaluation of ERA5 precipitation for climate monitoring. Quart. J. Roy. Meteor. Soc., 148, 31523165, https://doi.org/10.1002/qj.4351.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific Decadal Oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific Decadal Oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Search Google Scholar
    • Export Citation
  • NCDC, 2018: NOAA Smith and Reynolds Extended Reconstructed Sea Surface Temperature (ERSST) level 4 monthly version 5 dataset in netCDF. PO.DAAC, accessed 2 September 2022, https://doi.org/10.5067/ERSST-L4N50.

  • NOAA/Physical Sciences Laboratory, 2021: Nino3.4 SST index. GCOS, accessed 25 July 2021, https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/.

  • NOAA/Physical Sciences Laboratory, 2022: Dipole mode index. GCOS, accessed 20 August 2022, https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/.

  • Peixoto, J. P., and M. A. Kettani, 1973: The control of the water cycle. Sci. Amer., 228, 4663, https://doi.org/10.1038/scientificamerican0473-46.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Springer-Verlag, 520 pp.

  • Peters, J. M., H. Morrison, T. C. Nelson, J. N. Marquis, J. P. Mulholland, and C. J. Nowotarski, 2022: The influence of shear on deep convection initiation. Part I: Theory. J. Atmos. Sci., 79, 16691690, https://doi.org/10.1175/JAS-D-21-0145.1.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58, 14271445, https://doi.org/10.1175/1520-0469(2001)058<1427:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, J. B., C. A. Clayson, F. R. Robertson, and D. L. Jackson, 2010: Predicting near-surface atmospheric variables from special sensor microwave/imager using neural networks with a first-guess approach. J. Geophys. Res., 115, D19113, https://doi.org/10.1029/2009JD013099.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., and Coauthors, 2020: Uncertainties in ocean latent heat flux variations over recent decades in satellite-based estimates and reduced observation reanalyses. J. Climate, 33, 84158437, https://doi.org/10.1175/JCLI-D-19-0954.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2015: The observed state of the water cycle in the early twenty-first century. J. Climate, 28, 82898318, https://doi.org/10.1175/JCLI-D-14-00555.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and P. R. Houser, 2007: Assessing a satellite-era perspective of the global water cycle. J. Climate, 20, 13161338, https://doi.org/10.1175/JCLI4057.1.

    • Search Google Scholar
    • Export Citation
  • SeaPAC, 2020: QuikSCAT level 2B ocean wind vectors in 12.5km slice composites version 4.1. PO.DAAC, accessed 15 October 2022, https://doi.org/10.5067/QSX12-L2B41.

  • Seto, S., 2022: Examining the consistency of precipitation rate estimates between the TRMM and GPM Ku-band radars. SOLA, 18, 5357, https://doi.org/10.2151/sola.2022-009.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., and F.-F. Jin, 2005: A study of the impact of off-equatorial warm pool SST anomalies on ENSO cycles. J. Climate, 18, 274286, https://doi.org/10.1175/JCLI-3269.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324, https://doi.org/10.1175/2008BAMS2634.1.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., A. T. C. Chang, and L. S. Chiu, 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136, https://doi.org/10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate, 6, 18981913, https://doi.org/10.1175/1520-0442(1993)006<1898:LSVOAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., B. Ren, and J. Zheng, 2019: A unified complex index to characterize two types of ENSO simultaneously. Sci. Rep., 9, 8373, https://doi.org/10.1038/s41598-019-44617-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2882 2882 0
Full Text Views 1272 1272 288
PDF Downloads 236 236 27