Future Derecho Potential in the United States

Kristie Kaminski Department of Earth, Atmosphere, and Environment, Northern Illinois University, DeKalb, Illinois

Search for other papers by Kristie Kaminski in
Current site
Google Scholar
PubMed
Close
,
Walker S. Ashley Department of Earth, Atmosphere, and Environment, Northern Illinois University, DeKalb, Illinois

Search for other papers by Walker S. Ashley in
Current site
Google Scholar
PubMed
Close
,
Alex M. Haberlie Department of Earth, Atmosphere, and Environment, Northern Illinois University, DeKalb, Illinois

Search for other papers by Alex M. Haberlie in
Current site
Google Scholar
PubMed
Close
, and
Vittorio A. Gensini Department of Earth, Atmosphere, and Environment, Northern Illinois University, DeKalb, Illinois

Search for other papers by Vittorio A. Gensini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses high-resolution, convection-permitting, dynamically downscaled regional climate simulation output to assess how long-lived, convectively induced, extratropical windstorms known as derechos may change across the CONUS during the twenty-first century. Three 15-yr epochs including a historical period (1990–2005) and two separate late-twenty-first-century periods (2085–2100) employing intermediate (RCP4.5) and pessimistic (RCP8.5) greenhouse gas concentration scenarios are evaluated. A mesoscale convective system (MCS) identification and tracking tool catalogs derecho candidates across epochs using simulated radar reflectivity and maximum 10-m wind speed as a proxy for near-surface severe wind gusts. Results indicate that MCS-based windstorms, including derechos, are more frequent, widespread, and intense in both future climate scenarios examined for most regions of the central and eastern CONUS. Increases are suggested across all parts of the year, with significant changes in populations concentrated during the early spring and summer months, suggesting the potential for a longer, more extreme MCS windstorm season. This research provides insights for forecasters, emergency managers, and wind-vulnerable stakeholders on how these events may change across the twenty-first century so that they may mitigate, adapt to, and become resilient against severe convective storm perils.

Significance Statement

Long-lived, thunderstorm-induced, damaging wind events known as derechos may increase across most portions of the central and eastern United States in the future, with projections indicating a near doubling or tripling of annual cases in the Midwest, eastern Great Plains, and Mississippi and Ohio Valley regions by the end of the twenty-first century. Modeling projections suggest that future derechos could generally be longer-lived, more expansive, and capable of producing more severe wind gusts and damage, which will ultimately increase risk to life, infrastructure, and wind-sensitive industries affected by these extreme thunderstorm events.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Walker S. Ashley, washley@niu.edu

Abstract

This study uses high-resolution, convection-permitting, dynamically downscaled regional climate simulation output to assess how long-lived, convectively induced, extratropical windstorms known as derechos may change across the CONUS during the twenty-first century. Three 15-yr epochs including a historical period (1990–2005) and two separate late-twenty-first-century periods (2085–2100) employing intermediate (RCP4.5) and pessimistic (RCP8.5) greenhouse gas concentration scenarios are evaluated. A mesoscale convective system (MCS) identification and tracking tool catalogs derecho candidates across epochs using simulated radar reflectivity and maximum 10-m wind speed as a proxy for near-surface severe wind gusts. Results indicate that MCS-based windstorms, including derechos, are more frequent, widespread, and intense in both future climate scenarios examined for most regions of the central and eastern CONUS. Increases are suggested across all parts of the year, with significant changes in populations concentrated during the early spring and summer months, suggesting the potential for a longer, more extreme MCS windstorm season. This research provides insights for forecasters, emergency managers, and wind-vulnerable stakeholders on how these events may change across the twenty-first century so that they may mitigate, adapt to, and become resilient against severe convective storm perils.

Significance Statement

Long-lived, thunderstorm-induced, damaging wind events known as derechos may increase across most portions of the central and eastern United States in the future, with projections indicating a near doubling or tripling of annual cases in the Midwest, eastern Great Plains, and Mississippi and Ohio Valley regions by the end of the twenty-first century. Modeling projections suggest that future derechos could generally be longer-lived, more expansive, and capable of producing more severe wind gusts and damage, which will ultimately increase risk to life, infrastructure, and wind-sensitive industries affected by these extreme thunderstorm events.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Walker S. Ashley, washley@niu.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.9923 MB)
Save
  • Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013: Sensitivity of bow-echo simulation to microphysical parameterizations. Wea. Forecasting, 28, 11881209, https://doi.org/10.1175/WAF-D-12-00108.1.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., 2018: Climate change and severe thunderstorms. Oxford Research Encyclopedia of Climate Science, H. Brooks Ed., Oxford University Press, 67 pp., https://doi.org/10.1093/acrefore/9780190228620.013.62.

  • Ashley, W. S., and T. L. Mote, 2005: Derecho hazards in the United States. Bull. Amer. Meteor. Soc., 86, 15771592, https://doi.org/10.1175/BAMS-86-11-1577.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and S. M. Strader, 2016: Recipe for disaster: How the dynamic ingredients of risk and exposure are changing the tornado disaster landscape. Bull. Amer. Meteor. Soc., 97, 767786, https://doi.org/10.1175/BAMS-D-15-00150.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., T. L. Mote, and M. L. Bentley, 2005: On the episodic nature of derecho-producing convective systems in the United States. Int. J. Climatol., 25, 19151932, https://doi.org/10.1002/joc.1229.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., T. L. Mote, and M. L. Bentley, 2007: The extensive episode of derecho-producing convective systems in the United States during May and June 1998: A multi-scale analysis and review. Meteor. Appl., 14, 227244, https://doi.org/10.1002/met.23.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., S. Strader, T. Rosencrants, and A. J. Krmenec, 2014: Spatiotemporal changes in tornado hazard exposure: The case of the expanding bull’s-eye effect in Chicago, Illinois. Wea. Climate Soc., 6, 175193, https://doi.org/10.1175/WCAS-D-13-00047.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. M. Haberlie, and J. Strohm, 2019: A climatology of quasi-linear convective systems and their hazards in the United States. Wea. Forecasting, 34, 16051631, https://doi.org/10.1175/WAF-D-19-0014.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. M. Haberlie, and V. A. Gensini, 2023: The future of supercells in the United States. Bull. Amer. Meteor. Soc., 104, E1E21, https://doi.org/10.1175/BAMS-D-22-0027.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, https://doi.org/10.1175/JCLI3815.1.

    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., and T. L. Mote, 1998: A climatology of derecho-producing mesoscale convective systems in the central and eastern United States, 1986–95. Part I: Temporal and spatial distribution. Bull. Amer. Meteor. Soc., 79, 25272540, https://doi.org/10.1175/1520-0477(1998)079<2527:ACODPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., and T. L. Mote, 2000: A reply to comments on “A climatology of derecho producing mesoscale convective systems 1986–95. Part I: Temporal and spatial distribution.” Bull. Amer. Meteor. Soc., 81, 10541057, https://doi.org/10.1175/1520-0477(2000)081<1054:REPLY>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., and A. J. Sparks, 2003: A 15 yr climatology of derecho-producing mesoscale convective systems over the central and eastern United States. Climate Res., 24, 129139, https://doi.org/10.3354/cr024129.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, https://doi.org/10.1016/j.atmosres.2012.04.002.

    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 18471856, https://doi.org/10.1007/s00382-013-2011-6.

    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., A. J. Monaghan, D. F. Steinhoff, and D. Yates, 2015: Bias-corrected CMIP5 CESM data in WRF/MPAS intermediate file format. NCAR Tech. Note NCAR/TN-515+STR, 27 pp., https://doi.org/10.5065/D6445JJ7.

  • Bundy, L. R., V. A. Gensini, and M. S. Russo, 2022: Insured corn losses in the United States from weather and climate Perils. J. Appl. Meteor. Climatol., 61, 969988, https://doi.org/10.1175/JAMC-D-21-0245.1.

    • Search Google Scholar
    • Export Citation
  • Burke, P. C., and D. M. Schultz, 2004: A 4-Yr climatology of cold-season bow echoes over the continental United States. Wea. Forecasting, 19, 10611074, https://doi.org/10.1175/811.1.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., S. G. Benjamin, G. S. Forbes, and Y.-F. Li, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 14531474, https://doi.org/10.1175/1520-0493(1983)111<1453:EMLITR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheeks, S. M., S. Fueglistaler, and S. T. Garner, 2020: A satellite-based climatology of central and southeastern U.S. mesoscale convective systems. Mon. Wea. Rev., 148, 26072621, https://doi.org/10.1175/MWR-D-20-0027.1.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas‐Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and D. J. Stensrud, 2004: Interpreting the climatology of derechos. Wea. Forecasting, 19, 595605, https://doi.org/10.1175/1520-0434(2004)019<0595:ITCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320337, https://doi.org/10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252, https://doi.org/10.1175/JAS3681.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. F. Corfidi, and J. S. Kain, 2012: Views on applying RKW theory: An illustration using the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 140, 10231043, https://doi.org/10.1175/MWR-D-11-00026.1.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., M. C. Coniglio, A. E. Cohen, and C. M. Mead, 2016: A proposed revision to the definition of “derecho”. Bull. Amer. Meteor. Soc., 97, 935949, https://doi.org/10.1175/BAMS-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
  • Creighton, G., E. Kuchera, R. Adams-Selin, J. McCormick, S. Rentschler, and B. Wickard, 2014: AFWA diagnostics in WRF. 17 pp., https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5b4876dc88613a9cf49ec6c33f35317b01c63232.

  • Cui, W., X. Dong, B. Xi, and Z. Feng, 2021: Climatology of linear mesoscale convective system morphology in the United States based on the random-forests method. J. Climate, 34, 72577276, https://doi.org/10.1175/JCLI-D-20-0862.1.

    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous Terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, https://doi.org/10.1073/pnas.1307758110.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. T. Allen, and G. W. Carbin, 2018: Reliability and climatological impacts of convective wind estimations. J. Appl. Meteor. Climatol., 57, 18251845, https://doi.org/10.1175/JAMC-D-17-0306.1.

    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, R. J., and T. N. Carlson, 1989: Evidence for the role of the lid and underunning in an outbreak of tornadic thunderstorms. Mon. Wea. Rev., 117, 857871, https://doi.org/10.1175/1520-0493(1989)117<0857:EFTROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., and Coauthors, 2021: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. J. Geophys. Res. Atmos., 126, e2020JD034202, https://doi.org/10.1029/2020JD034202.

    • Search Google Scholar
    • Export Citation
  • Figurski, M. J., G. Nykiel, A. Jaczewski, Z. Baldysz, and M. Wdowikowski, 2022: The impact of initial and boundary conditions on severe weather event simulations using a high-resolution WRF model. Case study of the derecho event in Poland on 11 August 2017. Meteor. Hydrol. Water Manage., 10, 6087, https://doi.org/10.26491/mhwm/143877.

    • Search Google Scholar
    • Export Citation
  • Fritzen, R., V. Lang, and V. A. Gensini, 2021: Trends and variability of North American cool-season extratropical cyclones: 1979–2019. J. Appl. Meteor. Climatol., 60, 13191331, https://doi.org/10.1175/JAMC-D-20-0276.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and R. M. Wakimoto, 1981: Five scales of airflow associated with a series of downbursts on 16 July 1980. Mon. Wea. Rev., 109, 14381456, https://doi.org/10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., 2021: Severe convective storms in a changing climate. Climate Change and Extreme Events, A. Fares, Ed., Springer, 39–56, https://doi.org/10.1016/B978-0-12-822700-8.00007-X.

  • Gensini, V. A., and T. L. Mote, 2014: Estimations of hazardous convective weather in the United States using dynamical downscaling. J. Climate, 27, 65816589, https://doi.org/10.1175/JCLI-D-13-00777.1.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and T. L. Mote, 2015: Downscaled estimates of late 21st century severe weather from CCSM3. Climatic Change, 129, 307321, https://doi.org/10.1007/s10584-014-1320-z.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., C. Ramseyer, and T. L. Mote, 2014: Future convective environments using NARCCAP. Int. J. Climatol., 34, 16991705, https://doi.org/10.1002/joc.3769.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., A. M. Haberlie, and W. S. Ashley, 2023: Convection-permitting simulations of historical and possible future climate over the contiguous United States. Climate Dyn., 60, 109126, https://doi.org/10.1007/s00382-022-06306-0.

    • Search Google Scholar
    • Export Citation
  • González-Alemán, J. J., D. Insua-Costa, E. Bazile, S. González-Herrero, M. Marcello Miglietta, P. Groenemeijer, and M. G. Donat, 2023: Anthropogenic warming had a crucial role in triggering the historic and destructive Mediterranean derecho in summer 2022. Bull. Amer. Meteor. Soc., 104, E1526E1532, https://doi.org/10.1175/BAMS-D-23-0119.1.

    • Search Google Scholar
    • Export Citation
  • Guastini, C. T., and L. F. Bosart, 2016: Analysis of a progressive derecho climatology and associated formation environments. Mon. Wea. Rev., 144, 13631382, https://doi.org/10.1175/MWR-D-15-0256.1.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2018a: A method for identifying midlatitude mesoscale convective systems in radar mosaics. Part I: Segmentation and classification. J. Appl. Meteor. Climatol., 57, 15751598, https://doi.org/10.1175/JAMC-D-17-0293.1.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2018b: A method for identifying midlatitude mesoscale convective systems in radar mosaics. Part II: Tracking. J. Appl. Meteor. Climatol., 57, 15991621, https://doi.org/10.1175/JAMC-D-17-0294.1.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2019a: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 15911606, https://doi.org/10.1175/JCLI-D-18-0559.1.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2019b: Climatological representation of mesoscale convective systems in a dynamically downscaled climate simulation. Int. J. Climatol., 39, 11441153, https://doi.org/10.1002/joc.5880.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, C. M. Battisto, and V. A. Gensini, 2022: Thunderstorm activity under intermediate and extreme climate change scenarios. Geophys. Res. Lett., 49, e2022GL098779, https://doi.org/10.1029/2022GL098779.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, V. A. Gensini, and A. C. Michaelis, 2023: The ratio of mesoscale convective system precipitation to total precipitation increases in future climate change scenarios. npj Climate Atmos. Sci., 6, 150, https://doi.org/10.1038/s41612-023-00481-5.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., B. Wallace, W. S. Ashley, V. Gensini, and A. Michaelis, 2024: Mesoscale convective system activity in the United States under intermediate and extreme climate change scenarios. Climatic Change, 177, 94, https://doi.org/10.1007/s10584-024-03752-z.

    • Search Google Scholar
    • Export Citation
  • Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. WMO Tech. Doc. WMO/TD-1555, 64 pp., https://www.systemsengineeringaustralia.com.au/download/WMO_TC_Wind_Averaging_27_Aug_2010.pdf.

  • Harris, A. R., and J. D. W. Kahl, 2017: Gust factors: Meteorologically stratified climatology, data artifacts, and utility in forecasting peak gusts. J. Appl. Meteor. Climatol., 56, 31513166, https://doi.org/10.1175/JAMC-D-17-0133.1.

    • Search Google Scholar
    • Export Citation
  • Hinrichs, G. D., 1888: Tornadoes and derechos. Amer. Meteor. J., 5, 341349.

  • Hoogewind, K. A., M. E. Baldwin, and R. J. Trapp, 2017: The impact of climate change on hazardous convective weather in the United States: Insight from high-resolution dynamical downscaling. J. Climate, 30, 10 08110 100, https://doi.org/10.1175/JCLI-D-16-0885.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., Jr., 2018: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-00s01.1.

  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. V. Masson-Delmotte et al., Eds., Cambridge University Press, 2409 pp., www.ipcc.ch/report/ar6/wg1/.

  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249, https://doi.org/10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and J. S. Evans, 2000: Comments on “A climatology of derecho-producing mesoscale convective systems in the central and eastern United States, 1986–95. Part I: Temporal and spatial distribution”. Bull. Amer. Meteor. Soc., 81, 10491054, https://doi.org/10.1175/1520-0477(2000)081<1049:COACOD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, C., L. Demant, P. Meyer, and D. Schindler, 2022: Highly resolved modeling of extreme wind speed in North America and Europe. Atmos. Sci. Lett., 23, e1082, https://doi.org/10.1002/asl.1082.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., A. F. Prein, C. A. Senior, and A. Stirling, 2021: Challenges and outlook for convection-permitting climate modelling. Philos. Trans. Roy. Soc., A379, 20190547, https://doi.org/10.1098/rsta.2019.0547.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013: Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, https://doi.org/10.1175/BAMS-D-11-00262.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2009: Data mining storm attributes from spatial grids. J. Atmos. Oceanic Technol., 26, 23532365, https://doi.org/10.1175/2009JTECHA1257.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2010: An objective method of evaluating and devising storm-tracking algorithms. Wea. Forecasting, 25, 701709, https://doi.org/10.1175/2009WAF2222330.1.

    • Search Google Scholar
    • Export Citation
  • Lang, V. A., T. J. Turner, B. R. Selbig, A. R. Harris, and J. D. W. Kahl, 2022: Predicting peak wind gusts during specific weather types with the meteorologically stratified gust factor model. Wea. Forecasting, 37, 14351446, https://doi.org/10.1175/WAF-D-21-0201.1.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., S. A. Orendorf, and R. J. Trapp, 2023: Investigating a derecho in a future warmer climate. Bull. Amer. Meteor. Soc., 104, E1831E1852, https://doi.org/10.1175/BAMS-D-22-0173.1.

    • Search Google Scholar
    • Export Citation
  • Lepore, C., R. Abernathey, N. Henderson, J. T. Allen, and M. K. Tippett, 2021: Future global convective environments in CMIP6 models. Earth’s Future, 9, e2021EF002277, https://doi.org/10.1029/2021EF002277.

    • Search Google Scholar
    • Export Citation
  • Li, J., Y. Qian, L. R. Leung, X. Chen, Z. Yang, and Z. Feng, 2023: Potential weakening of the June 2012 North American derecho under future warming conditions. J. Geophys. Res. Atmos., 128, e2022JD037494, https://doi.org/10.1029/2022JD037494.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2016: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Search Google Scholar
    • Export Citation
  • Liu, W., P. A. Ullrich, J. Li, C. Zarzycki, P. M. Caldwell, L. R. Leung, and Y. Qian, 2023: The June 2012 North American derecho: A testbed for evaluating regional and global climate modeling systems at cloud-resolving scales. J. Adv. Model. Earth Syst., 15, e2022MS003358, https://doi.org/10.1029/2022MS003358.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., D. Argüeso, E. Brisson, Y. Tramblay, P. Berg, A. Lemonsu, S. Kotlarski, and C. Caillaud, 2021: Convection-permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdiscip. Rev.: Climate Change, 12, e731, https://doi.org/10.1002/wcc.731.

    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2007: Assessment of the severe weather environment in North America simulated by a global climate model. Atmos. Sci. Lett., 8, 100106, https://doi.org/10.1002/asl.159.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, https://doi.org/10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Milne, J. M., 2016: Verification of 10-meter wind forecasts from NSSL-WRF in predicting severe wind-producing MCSs. M.S. thesis, Dept. of Geography and Environmental Sustainability, The University of Oklahoma, 77 pp., https://shareok.org/bitstream/handle/11244/47072/2016_Milne_Jeffrey_Thesis.pdf?sequence=1&isAllowed=y.

  • NOAA NCEI, 2023: U.S. billion-dollar weather and climate disasters, https://doi.org/10.25921/stkw-7w73.

  • Núñez Ocasio, K. M., J. L. Evans, and G. S. Young, 2020: Tracking mesoscale convective systems that are potential candidates for tropical cyclogenesis. Mon. Wea. Rev., 148, 655669, https://doi.org/10.1175/MWR-D-19-0070.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., 2023: Thunderstorm straight line winds intensify with climate change. Nat. Climate Change, 13, 13531359, https://doi.org/10.1038/s41558-023-01852-9.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland, and M. P. Clark, 2017: Increased rainfall volume from future convective storms in the US. Nat. Climate Change, 7, 880884, https://doi.org/10.1038/s41558-017-0007-7.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, D. Wang, and S. E. Giangrande, 2021: Sensitivity of organized convective storms to model grid spacing in current and future climates. Philos. Trans. Roy. Soc., A379, 20190546, https://doi.org/10.1098/rsta.2019.0546.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu, 2020: Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn., 55, 383408, https://doi.org/10.1007/s00382-017-4000-7.

    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., and Coauthors, 2021: The effects of climate change on hailstorms. Nat. Rev. Earth Environ., 2, 213226, https://doi.org/10.1038/s43017-020-00133-9.

    • Search Google Scholar
    • Export Citation
  • Robinson, E. D., R. J. Trapp, and M. E. Baldwin, 2013: The geospatial and temporal distributions of severe thunderstorms from high-resolution dynamical downscaling. J. Appl. Meteor. Climatol., 52, 21472161, https://doi.org/10.1175/JAMC-D-12-0131.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and K. L. Rasmussen, 2020: The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ., 1, 300314, https://doi.org/10.1038/s43017-020-0057-7.

    • Search Google Scholar
    • Export Citation
  • Seeley, J. T., and D. M. Romps, 2015: The effect of global warming on severe thunderstorms in the United States. J. Climate, 28, 24432458, https://doi.org/10.1175/JCLI-D-14-00382.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. J., F. L. Letson, R. J. Barthelmie, and S. C. Pryor, 2021: How well are hazards associated with derechos reproduced in regional climate simulations? Nat. Hazards Earth Syst. Sci., 2021, 142, https://doi.org/10.5194/nhess-2021-373.

    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, https://doi.org/10.1175/WAF-D-13-00041.1.

    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., M. D. Parker, J. R. King, and G. M. Lackmann, 2016: Composite environments of severe and nonsevere high-shear, low-CAPE convective events. Wea. Forecasting, 31, 18991927, https://doi.org/10.1175/WAF-D-16-0086.1.

    • Search Google Scholar
    • Export Citation
  • Sheridan, P., 2018: Current gust forecasting techniques, developments and challenges. Adv. Sci. Res., 15, 159172, https://doi.org/10.5194/asr-15-159-2018.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4.1. NCAR Tech. Note NCAR/TN-556+STR, 162 pp., https://doi.org/10.5065/1dfh-6p97.

  • Smith, A., N. Lott, and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, https://doi.org/10.1175/2011BAMS3015.1.

    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and R. W. Katz, 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, https://doi.org/10.1007/s11069-013-0566-5.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., T. E. Castellanos, A. C. Winters, C. M. Mead, A. R. Dean, and R. L. Thompson, 2013: Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States, 2003–09. Wea. Forecasting, 28, 229236, https://doi.org/10.1175/WAF-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Squitieri, B. J., A. R. Wade, and I. L. Jirak, 2023a: A historical overview on the science of derechos. Part 1: Identification, climatology, and societal impacts. Bull. Amer. Meteor. Soc., 104, E1709E1733, https://doi.org/10.1175/BAMS-D-22-0217.1.

    • Search Google Scholar
    • Export Citation
  • Squitieri, B. J., A. R. Wade, and I. L. Jirak, 2023b: A historical overview on the science of derechos. Part II: Parent storm structure, environmental conditions, and history of numerical forecasts. Bull. Amer. Meteor. Soc., 104, E1734E1763, https://doi.org/10.1175/BAMS-D-22-0278.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., M. C. Coniglio, R. P. Davies-Jones, and J. S. Evans, 2005: Comments on “‘A theory for strong long-lived squall lines’ revisited”. J. Atmos. Sci., 62, 29892996, https://doi.org/10.1175/JAS3514.1.

    • Search Google Scholar
    • Export Citation
  • Suomi, I., S.-E. Gryning, R. Floors, T. Vihma, and C. Fortelius, 2015: On the vertical structure of wind gusts. Quart. J. Roy. Meteor. Soc., 141, 16581670, https://doi.org/10.1002/qj.2468.

    • Search Google Scholar
    • Export Citation
  • Surowiecki, A., and M. Taszarek, 2020: A 10-year radar-based climatology of mesoscale convective system archetypes and derechos in Poland. Mon. Wea. Rev., 148, 34713488, https://doi.org/10.1175/MWR-D-19-0412.1.

    • Search Google Scholar
    • Export Citation
  • Theodoridis, S., and K. Koutroumbas, 2003: Pattern Recognition. Academic Press, 689 pp.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. T. Allen, V. A. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective weather. Curr. Climate Change Rep., 1, 6073, https://doi.org/10.1007/s40641-015-0006-6.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and K. A. Hoogewind, 2016: The realization of extreme tornadic storm events under future anthropogenic climate change. J. Climate, 29, 52515265, https://doi.org/10.1175/JCLI-D-15-0623.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, https://doi.org/10.1073/pnas.0705494104.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, and A. Gluhovsky, 2009: Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations. Geophys. Res. Lett., 36, L01703, https://doi.org/10.1029/2008GL036203.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. D. Robinson, M. E. Baldwin, N. S. Diffenbaugh, and B. R. J. Schwedler, 2011: Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Climate Dyn., 37, 677688, https://doi.org/10.1007/s00382-010-0826-y.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., K. A. Hoogewind, and S. Lasher-Trapp, 2019: Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling. J. Climate, 32, 54935509, https://doi.org/10.1175/JCLI-D-18-0740.1.

    • Search Google Scholar
    • Export Citation
  • USGCRP, 2023: Fifth National Climate Assessment. U.S. Global Change Research Program, 1834 pp., https://doi.org/10.7930/NCA5.2023.

  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., J. A. Hart, and P. R. Janish, 2002: An examination of severe thunderstorm wind report climatology: 1970–1999. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 11B.2, https://ams.confex.com/ams/pdfpapers/47494.pdf.

  • Whittaker, L. M., and L. H. Horn, 1984: Northern Hemisphere extratropical cyclone activity for four mid-season months. J. Climatol., 4, 297310, https://doi.org/10.1002/joc.3370040307.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Pu, and X. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893914, https://doi.org/10.1175/WAF-D-12-00109.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2162 2162 0
Full Text Views 935 935 284
PDF Downloads 437 437 75