Anomalous Hawaiian Sea Level Pressure Is Key to Initiate the North Pacific Meridional Mode

Yiming Wang School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yiming Wang in
Current site
Google Scholar
PubMed
Close
and
Ming Bao School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Ming Bao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1142-2554
Restricted access

Abstract

The spring North Pacific meridional mode (NPMM) has a significant impact on the development of the following El Niño–Southern Oscillation (ENSO). Thus, understanding the source of the NPMM is of great importance for predicting the subsequent ENSO. The prevailing explanation for the formation of the spring NPMM is associated with the North Pacific Oscillation (NPO) during the preceding winter. Using observational data and phase 6 of the Coupled Model Intercomparison Project (CMIP6) outputs, this study clarifies that the anomalous sea level pressure (SLP) over the Hawaiian region from January to March (JFM), rather than the NPO, is key to initiate the spring NPMM. Analysis of the JFM SLP anomalies related to the spring NPMM reveals that the greater standard deviation of SLP anomalies at higher latitudes amplifies the impact of extratropical atmospheric variability on the formation of the spring NPMM. The key role of the Hawaiian SLP anomalies is further supported by their ability to initiate the spring NPMM independently of the NPO, whereas the NPO cannot. The Hawaiian SLP anomalies can also initiate the spring NPMM independently of the wintertime central Pacific ENSO which is NPMM’s another possible source. The results of the CMIP6 outputs demonstrate that the impact of the JFM Hawaiian anomalies on the spring NPMM is consistent with the observation, whereas the impact of the JFM NPO is inconsistent. Not all the JFM SLP anomalies associated with the spring NPMM exhibit the NPO-like pattern in these models.

Significance Statement

The North Pacific meridional mode (NPMM) is the leading mode of ocean–atmosphere variability over the tropical and subtropical North Pacific after removing the concurrent ENSO, which is most significant in boreal spring. Previous studies mainly assume that the spring NPMM formation is associated with the North Pacific Oscillation (NPO) during the preceding winter. This study elucidates that the anomalous sea level pressure (SLP) over the Hawaiian region, rather than the NPO, is key to initiate the spring NPMM. The greater standard deviation of SLP anomalies at higher latitudes is responsible for the emergence of the NPO-like pattern. These results can enhance our understanding of the extent to which the NPMM is affected by extratropical atmospheric variability.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Bao, baom@nju.edu.cn

Abstract

The spring North Pacific meridional mode (NPMM) has a significant impact on the development of the following El Niño–Southern Oscillation (ENSO). Thus, understanding the source of the NPMM is of great importance for predicting the subsequent ENSO. The prevailing explanation for the formation of the spring NPMM is associated with the North Pacific Oscillation (NPO) during the preceding winter. Using observational data and phase 6 of the Coupled Model Intercomparison Project (CMIP6) outputs, this study clarifies that the anomalous sea level pressure (SLP) over the Hawaiian region from January to March (JFM), rather than the NPO, is key to initiate the spring NPMM. Analysis of the JFM SLP anomalies related to the spring NPMM reveals that the greater standard deviation of SLP anomalies at higher latitudes amplifies the impact of extratropical atmospheric variability on the formation of the spring NPMM. The key role of the Hawaiian SLP anomalies is further supported by their ability to initiate the spring NPMM independently of the NPO, whereas the NPO cannot. The Hawaiian SLP anomalies can also initiate the spring NPMM independently of the wintertime central Pacific ENSO which is NPMM’s another possible source. The results of the CMIP6 outputs demonstrate that the impact of the JFM Hawaiian anomalies on the spring NPMM is consistent with the observation, whereas the impact of the JFM NPO is inconsistent. Not all the JFM SLP anomalies associated with the spring NPMM exhibit the NPO-like pattern in these models.

Significance Statement

The North Pacific meridional mode (NPMM) is the leading mode of ocean–atmosphere variability over the tropical and subtropical North Pacific after removing the concurrent ENSO, which is most significant in boreal spring. Previous studies mainly assume that the spring NPMM formation is associated with the North Pacific Oscillation (NPO) during the preceding winter. This study elucidates that the anomalous sea level pressure (SLP) over the Hawaiian region, rather than the NPO, is key to initiate the spring NPMM. The greater standard deviation of SLP anomalies at higher latitudes is responsible for the emergence of the NPO-like pattern. These results can enhance our understanding of the extent to which the NPMM is affected by extratropical atmospheric variability.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Bao, baom@nju.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.7683 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., 2019: The Pacific Meridional Mode and ENSO: A review. Curr. Climate Change Rep., 5, 296307, https://doi.org/10.1007/s40641-019-00142-x.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., R. C. Perez, and A. Karspeck, 2013: Triggering of El Niño onset through trade wind–induced charging of the equatorial Pacific. Geophys. Res. Lett., 40, 12121216, https://doi.org/10.1002/grl.50200.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño—Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and R. Wu, 2018: Impacts of winter NPO on subsequent winter ENSO: Sensitivity to the definition of NPO index. Climate Dyn., 50, 375389, https://doi.org/10.1007/s00382-017-3615-z.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and W. Chen, 2022: Distinctive impact of spring AO on the succedent winter El Niño event: Sensitivity to AO’s North Pacific component. Climate Dyn., 58, 235255, https://doi.org/10.1007/s00382-021-05898-3.

    • Search Google Scholar
    • Export Citation
  • Chen, S., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973989, https://doi.org/10.1007/s00382-012-1654-z.

    • Search Google Scholar
    • Export Citation
  • Chen, S., W. Chen, R. Wu, B. Yu, and H.-F. Graf, 2020a: Potential impact of preceding Aleutian low variation on El Niño–Southern Oscillation during the following winter. J. Climate, 33, 30613077, https://doi.org/10.1175/JCLI-D-19-0717.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, W. Chen, and B. Yu, 2020b: Influence of winter Arctic sea ice concentration change on the El Niño–Southern Oscillation in the following winter. Climate Dyn., 54, 741757, https://doi.org/10.1007/s00382-019-05027-1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., W. Chen, B. Yu, and R. Wu, 2023: How well can current climate models simulate the connection of the early spring Aleutian low to the following winter ENSO? J. Climate, 36, 603624, https://doi.org/10.1175/JCLI-D-22-0323.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., W. Chen, R. Wu, B. Yu, and J. Ying, 2024a: Joint impacts of winter North Pacific Oscillation and early spring Aleutian low intensity on the following winter ENSO. Climate Dyn., 62, 257276, https://doi.org/10.1007/s00382-023-06922-4.

    • Search Google Scholar
    • Export Citation
  • Chen, S., W. Chen, S.-P. Xie, B. Yu, R. Wu, Z. Wang, X. Lan, and H.-F. Graf, 2024b: Strengthened impact of boreal winter North Pacific Oscillation on ENSO development in warming climate. npj Climate Atmos. Sci., 7, 69, https://doi.org/10.1038/s41612-024-00615-3.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Deng, J., and A. Dai, 2024: Arctic sea ice–air interactions weaken El Niño–Southern Oscillation. Sci. Adv., 10, eadk3990, https://doi.org/10.1126/sciadv.adk3990.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., K. M. Cobb, J. C. Furtado, N. Schneider, B. T. Anderson, A. Bracco, M. A. Alexander, and D. J. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci., 3, 762765, https://doi.org/10.1038/ngeo984.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys. Res. Lett., 42, 94409448, https://doi.org/10.1002/2015GL066281.

    • Search Google Scholar
    • Export Citation
  • Ding, R., and Coauthors, 2022: Multi-year El Niño events tied to the North Pacific Oscillation. Nat. Commun., 13, 3871, https://doi.org/10.1038/s41467-022-31516-9.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fan, H., B. Huang, S. Yang, and W. Dong, 2021: Influence of the Pacific meridional mode on ENSO evolution and predictability: Asymmetric modulation and ocean preconditioning. J. Climate, 34, 18811901, https://doi.org/10.1175/JCLI-D-20-0109.1.

    • Search Google Scholar
    • Export Citation
  • Fan, H., C. Wang, and S. Yang, 2023: Asymmetry between positive and negative phases of the Pacific Meridional Mode: A contributor to ENSO transition complexity. Geophys. Res. Lett., 50, e2023GL104000, https://doi.org/10.1029/2023GL104000.

    • Search Google Scholar
    • Export Citation
  • Fang, S.-W., and J.-Y. Yu, 2020: A control of ENSO transition complexity by tropical Pacific mean SSTs through tropical‐subtropical interaction. Geophys. Res. Lett., 47, e2020GL087933, https://doi.org/10.1029/2020GL087933.

    • Search Google Scholar
    • Export Citation
  • He, S., J.-Y. Yu, S. Yang, and S.-W. Fang, 2020: Why does the CP El Niño less frequently evolve into La Niña than the EP El Niño? Geophys. Res. Lett., 47, e2020GL087876, https://doi.org/10.1029/2020GL087876.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, S., W. Zhang, M. Watanabe, F. Jiang, F.-F. Jin, and H.-C. Chen, 2024: Equatorial western–central Pacific SST responsible for the North Pacific Oscillation–ENSO sequence. J. Climate, 37, 31913204, https://doi.org/10.1175/JCLI-D-23-0434.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2022: Single- and multi-year ENSO events controlled by pantropical climate interactions. npj Climate Atmos. Sci., 5, 88, https://doi.org/10.1038/s41612-022-00305-y.

    • Search Google Scholar
    • Export Citation
  • Larson, S., and B. Kirtman, 2013: The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 31893194, https://doi.org/10.1002/grl.50571.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–West Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • Liu, B., B. Gan, F. Jia, and L. Wu, 2024: Impact of the North Pacific meridional mode on the tropical Pacific modulated by the interdecadal Pacific oscillation. J. Climate, 37, 21992216, https://doi.org/10.1175/JCLI-D-23-0448.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and H. Xu, 2017: Contributions of the North Pacific meridional mode to ensemble spread of ENSO prediction. J. Climate, 30, 91679181, https://doi.org/10.1175/JCLI-D-17-0182.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., T. Li, S.-W. Yeh, and H. Kim, 2019: Effect of recent Atlantic warming in strengthening Atlantic–Pacific teleconnection on interannual timescale via enhanced connection with the Pacific meridional mode. Climate Dyn., 53, 371387, https://doi.org/10.1007/s00382-018-4591-7.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.

    • Search Google Scholar
    • Export Citation
  • Richter, I., M. F. Stuecker, N. Takahashi, and N. Schneider, 2022: Disentangling the North Pacific Meridional Mode from tropical Pacific variability. npj Climate Atmos. Sci., 5, 94, https://doi.org/10.1038/s41612-022-00317-8.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3957, https://doi.org/10.1002/joc.3370010106.

  • Shu, Q., Y. Zhang, D. J. Amaya, S. M. Larson, Y. Kosaka, J.-C. Yang, and X. Lin, 2023: Role of ocean advections during the evolution of the Pacific meridional modes. J. Climate, 36, 43274343, https://doi.org/10.1175/JCLI-D-22-0296.1.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., 2018: Revisiting the Pacific Meridional Mode. Sci. Rep., 8, 3216, https://doi.org/10.1038/s41598-018-21537-0.

  • Sung, M.-K., S.-W. Son, C. Yoo, J. Hwang, and S.-I. An, 2022: Dynamics of two distinct subseasonal growth mechanisms of the North Pacific Oscillation. J. Climate, 35, 67416756, https://doi.org/10.1175/JCLI-D-21-0837.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365, https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, Y.-K., C.-C. Hong, and C.-T. Chen, 2018: Distinct effects of the two strong El Niño events in 2015–2016 and 1997–1998 on the western North Pacific monsoon and tropical cyclone activity: Role of subtropical eastern North Pacific warm SSTA. J. Geophys. Res. Oceans, 123, 36033618, https://doi.org/10.1002/2018JC013798.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., D.-W. Yi, M.-K. Sung, and Y. H. Kim, 2018: An eastward shift of the North Pacific Oscillation after the mid-1990s and its relationship with ENSO. Geophys. Res. Lett., 45, 66546660, https://doi.org/10.1029/2018GL078671.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, G. A. Vecchi, and H. Murakami, 2018: Impacts of the Pacific meridional mode on landfalling North Atlantic tropical cyclones. Climate Dyn., 50, 9911006, https://doi.org/10.1007/s00382-017-3656-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2021: Pacific meridional modes without equatorial Pacific influence. J. Climate, 34, 52855301, https://doi.org/10.1175/JCLI-D-20-0573.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S.-Y. Yu, D. J. Amaya, Y. Kosaka, M. F. Stuecker, J.-C. Yang, X. Lin, and L. Fan, 2022: Atmospheric forcing of the Pacific meridional mode: tropical Pacific‐driven versus internal variability. Geophys. Res. Lett., 49, e2022GL098148, https://doi.org/10.1029/2022GL098148.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., J.-S. Kug, J.-H. Park, and S.-I. An, 2020: Diversity of North Pacific meridional mode and its distinct impacts on El Niño‐Southern Oscillation. Geophys. Res. Lett., 47, e2020GL088993, https://doi.org/10.1029/2020GL088993.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., M.-K. Sung, J.-H. Park, J.-J. Luo, and J.-S. Kug, 2023a: Part I observational study on a new mechanism for North Pacific Oscillation influencing the tropics. npj Climate Atmos. Sci., 6, 15, https://doi.org/10.1038/s41612-023-00336-z.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., M.-K. Sung, J.-H. Park, J.-J. Luo, and J.-S. Kug, 2023b: Part II model support on a new mechanism for North Pacific Oscillation influence on ENSO. npj Climate Atmos. Sci., 6, 16, https://doi.org/10.1038/s41612-023-00337-y.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., W. Chen, and S. Chen, 2021a: Intermodel spread in the impact of the springtime Pacific meridional mode on following-winter ENSO tied to simulation of the ITCZ in CMIP5/CMIP6. Geophys. Res. Lett., 48, e2021GL093945, https://doi.org/10.1029/2021GL093945.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., W. Chen, S. Chen, S. Yao, and C. Cheng, 2021b: Asymmetric impact of the boreal spring Pacific Meridional Mode on the following winter El Niño-Southern Oscillation. Int. J. Climatol., 41, 35233538, https://doi.org/10.1002/joc.7033.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., S. Chen, W. Chen, and B. Yu, 2023: A continuing increase of the impact of the spring North Pacific meridional mode on the following winter El Niño and Southern Oscillation. J. Climate, 36, 585602, https://doi.org/10.1175/JCLI-D-22-0190.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., S. Chen, W. Chen, R. Wu, Z. Wang, B. Yu, P. Hu, and J. Piao, 2024: The role of the Aleutian low in the relationship between spring Pacific meridional mode and following ENSO. J. Climate, 37, 32493268, https://doi.org/10.1175/JCLI-D-23-0440.1.

    • Search Google Scholar
    • Export Citation
  • Zhong, W., W. Cai, A. Sullivan, W. Duan, and S. Yang, 2023: Seasonally alternate roles of the North Pacific Oscillation and the South Pacific Oscillation in tropical Pacific zonal wind and ENSO. J. Climate, 36, 43934411, https://doi.org/10.1175/JCLI-D-22-0461.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., L. Wu, C. Wang, and J. Cao, 2024: Shifted relationship between the Pacific Decadal Oscillation and western North Pacific tropical cyclogenesis since the 1990s. Environ. Res. Lett., 19, 014071, https://doi.org/10.1088/1748-9326/ad1640.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 32200 32200 0
Full Text Views 4481 4481 1249
PDF Downloads 407 407 42