Absence of Aerosol Indirect Effect Dependence on Background Climate State in NCAR CESM2

Kayla White Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Kayla White in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0001-7768-9147
,
Dunyu Liu Institute for Geophysics, The University of Texas at Austin, Austin, Texas

Search for other papers by Dunyu Liu in
Current site
Google Scholar
PubMed
Close
, and
Geeta Persad Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Geeta Persad in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The aerosol indirect effect (AIE) dominates uncertainty in total anthropogenic aerosol forcing in phase 6 of the Coupled Model Intercomparison Project (CMIP6) models. AIE strength depends on meteorological conditions that have been shown to change between preindustrial (PI) and present-day (PD) climates, such as cloud cover and atmospheric moisture. Hence, AIE strength may depend on background climate state, impacting the dependence of model-based AIE estimates on experiment design or the evolution of AIE strength with intensifying climate change, which has not previously been explicitly evaluated. Using atmosphere-only simulations with prescribed observed sea surface temperatures (SSTs) and sea ice in the National Center for Atmospheric Research (NCAR) Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), model, we impose a PD (2000) aerosol perturbation onto a PI (1850), PD, and PD with a uniform 4 K increase in the SST (PD + 4 K) background climate to assess the dependence of the total aerosol effective radiative forcing (ERF) and AIE on background climate. We find statistically insignificant increases in aerosol ERF when estimated in the different background climates, almost entirely from increases in direct ERF but with some regionally significant compensating signals in PD + 4 K. The absence of an AIE dependence on background climate in our PD simulation may be tied to documented differences in cloud responses to the observed SSTs used in our simulations versus SSTs produced by the fully coupled models from which most cloud feedback studies are derived, known as the “pattern effect.” Our findings indicate that AIE and aerosol forcing overall may not have a strong dependence on the background climate state in the near future but could regionally under extreme climate change.

Significance Statement

Diverse model representations of aerosol–cloud interactions strongly contribute to uncertainty in historical anthropogenic aerosol forcing and are associated with uncertainty in climate sensitivity. This study aims to highlight the dependence of aerosol indirect effects on the background climate state in Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), by identifying microphysical and meteorological changes between aerosol-driven atmospheric responses in present-day and preindustrial climate states to understand anthropogenic aerosol-driven forcing more thoroughly.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kayla White, kaylaw@utexas.edu

Abstract

The aerosol indirect effect (AIE) dominates uncertainty in total anthropogenic aerosol forcing in phase 6 of the Coupled Model Intercomparison Project (CMIP6) models. AIE strength depends on meteorological conditions that have been shown to change between preindustrial (PI) and present-day (PD) climates, such as cloud cover and atmospheric moisture. Hence, AIE strength may depend on background climate state, impacting the dependence of model-based AIE estimates on experiment design or the evolution of AIE strength with intensifying climate change, which has not previously been explicitly evaluated. Using atmosphere-only simulations with prescribed observed sea surface temperatures (SSTs) and sea ice in the National Center for Atmospheric Research (NCAR) Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), model, we impose a PD (2000) aerosol perturbation onto a PI (1850), PD, and PD with a uniform 4 K increase in the SST (PD + 4 K) background climate to assess the dependence of the total aerosol effective radiative forcing (ERF) and AIE on background climate. We find statistically insignificant increases in aerosol ERF when estimated in the different background climates, almost entirely from increases in direct ERF but with some regionally significant compensating signals in PD + 4 K. The absence of an AIE dependence on background climate in our PD simulation may be tied to documented differences in cloud responses to the observed SSTs used in our simulations versus SSTs produced by the fully coupled models from which most cloud feedback studies are derived, known as the “pattern effect.” Our findings indicate that AIE and aerosol forcing overall may not have a strong dependence on the background climate state in the near future but could regionally under extreme climate change.

Significance Statement

Diverse model representations of aerosol–cloud interactions strongly contribute to uncertainty in historical anthropogenic aerosol forcing and are associated with uncertainty in climate sensitivity. This study aims to highlight the dependence of aerosol indirect effects on the background climate state in Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), by identifying microphysical and meteorological changes between aerosol-driven atmospheric responses in present-day and preindustrial climate states to understand anthropogenic aerosol-driven forcing more thoroughly.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kayla White, kaylaw@utexas.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.3342 MB)
Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., and Coauthors, 2020: Bounding global aerosol radiative forcing of climate change. Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660.

    • Search Google Scholar
    • Export Citation
  • Bjordal, J., T. Storelvmo, K. Alterskjær, and T. Carlsen, 2020: Equilibrium climate sensitivity above 5°C plausible due to state-dependent cloud feedback. Nat. Geosci., 13, 718721, https://doi.org/10.1038/s41561-020-00649-1.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 96559676, https://doi.org/10.1175/JCLI-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., M. J. Webb, C. Bretherton, S. A. Klein, P. Siebesma, G. Tselioudis, and M. Zhang, 2011: CFMIP: Towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 20–23.

  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Carslaw, K. S., 2022: Aerosol in the climate system. Aerosols and Climate, 1st ed. K. S. Carslaw, Ed., Elsevier, 9–52, https://doi.org/10.1016/B978-0-12-819766-0.00008-0.

  • Carslaw, K. S., and K. Pringle, 2022: Global aerosol properties. Aerosols and Climate, 1st ed. K. S. Carslaw, Ed., Elsevier, 101–133, https://doi.org/10.1016/B978-0-12-819766-0.00011-0.

  • Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, https://doi.org/10.1038/nature12674.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and J. M. Gregory, 2017: Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc. Natl. Acad. Sci. USA, 114, 13 12613 131, https://doi.org/10.1073/pnas.1714308114.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and G. L. Potter, 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93, 83058314, https://doi.org/10.1029/JD093iD07p08305.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, https://doi.org/10.1029/JD095iD10p16601.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101, 12 79112 794, https://doi.org/10.1029/96JD00822.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, 33, 78357858, https://doi.org/10.1175/JCLI-D-20-0123.1.

    • Search Google Scholar
    • Export Citation
  • Dong, Y., C. Proistosescu, K. C. Armour, and D. S. Battisti, 2019: Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: The preeminence of the western Pacific. J. Climate, 32, 54715491, https://doi.org/10.1175/JCLI-D-18-0843.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, A., and T. L’Ecuyer, 2019: Quantifying variations in shortwave aerosol–cloud–radiation interactions using local meteorology and cloud state constraints. Atmos. Chem. Phys., 19, 62516268, https://doi.org/10.5194/acp-19-6251-2019.

    • Search Google Scholar
    • Export Citation
  • Emmons, L. K., and Coauthors, 2020: The chemistry mechanism in the Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001882, https://doi.org/10.1029/2019MS001882.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2021: Human influence on the climate system. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 423–552, https://doi.org/10.1017/9781009157896.005.

  • Forster, P., and Coauthors, 2021: The Earth’s energy budget, climate feedbacks and climate sensitivity. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 923–1054, https://doi.org/10.1017/9781009157896.009.

  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part II: Single-column and global results. J. Climate, 21, 36603679, https://doi.org/10.1175/2008JCLI2116.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, S. Santos, P. Bogenschutz, and P. M. Caldwell, 2015: Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol–cloud interactions. J. Climate, 28, 12881307, https://doi.org/10.1175/JCLI-D-14-00103.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2019: High climate sensitivity in the Community Earth System Model Version 2 (CESM2). Geophys. Res. Lett., 46, 83298337, https://doi.org/10.1029/2019GL083978.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., 2013: Technical note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys., 13, 99719974, https://doi.org/10.5194/acp-13-9971-2013.

    • Search Google Scholar
    • Export Citation
  • Glenn, I. B., G. Feingold, J. J. Gristey, and T. Yamaguchi, 2020: Quantification of the radiative effect of aerosol–cloud interactions in shallow continental cumulus clouds. J. Atmos. Sci., 77, 29052920, https://doi.org/10.1175/JAS-D-19-0269.1.

    • Search Google Scholar
    • Export Citation
  • Grandey, B. S., and C. Wang, 2019: Background conditions influence the estimated cloud radiative effects of anthropogenic aerosol emissions from different source regions. J. Geophys. Res. Atmos., 124, 22762295, https://doi.org/10.1029/2018JD029644.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud—Climate feedback. Geophys. Res. Lett., 29, 1951, https://doi.org/10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Heald, C. L., D. J. Jacob, R. J. Park, B. Alexander, T. D. Fairlie, R. M. Yantosca, and D. A. Chu, 2006: Transpacific transport of Asian anthropogenic aerosols and its impact on surface air quality in the United States. J. Geophys. Res., 111, D14310, https://doi.org/10.1029/2005JD006847.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., D. S. Covert, H. H. Jonsson, and R. K. Woods, 2010: The contribution of anthropogenic aerosols to aerosol light-scattering and CCN activity in the California coastal zone. Atmos. Chem. Phys., 10, 73417351, https://doi.org/10.5194/acp-10-7341-2010.

    • Search Google Scholar
    • Export Citation
  • Hoell, J. M., D. D. Davis, S. C. Liu, R. E. Newell, H. Akimoto, R. J. McNeal, and R. J. Bendura, 1997: The Pacific Exploratory Mission-West Phase B: February-March, 1994. J. Geophys. Res., 102, 28 22328 239, https://doi.org/10.1029/97JD02581.

    • Search Google Scholar
    • Export Citation
  • Hoesly, R. M., and Coauthors, 2018: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev., 11, 369408, https://doi.org/10.5194/gmd-11-369-2018.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjánsson, J.-P. Chen, and A. Hazra, 2010: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J. Atmos. Sci., 67, 24832503, https://doi.org/10.1175/2010JAS3425.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Huusko, L. L., F. A.-M. Bender, A. M. L. Ekman, and T. Storelvmo, 2021: Climate sensitivity indices and their relation with projected temperature change in CMIP6 models. Environ. Res. Lett., 16, 064095, https://doi.org/10.1088/1748-9326/ac0748.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Search Google Scholar
    • Export Citation
  • Liu, X., P.-L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, https://doi.org/10.5194/gmd-9-505-2016.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S.-H Ham, R. P. Allan, T. J. Thorsen, B. Meyssignac, S. Kato, G. C. Johnson, and J. M. Lyman, 2024: Observational assessment of changes in earth’s energy imbalance since 2000. Surv. Geophys., https://doi.org/10.1007/s10712-024-09838-8.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 2014: Ocean–cloud–atmosphere–land interactions in the southeastern Pacific: The VOCALS program. Bull. Amer. Meteor. Soc., 95, 357375, https://doi.org/10.1175/BAMS-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. A. Senior, V. Eyring, G. Flato, J.-F. Lamarque, R. J. Stouffer, K. E. Taylor, and M. Schlund, 2020: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv., 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., R. C. Scott, M. D. Zelinka, S. A. Klein, J. R. Norris, and P. M. Caldwell, 2021: Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Climate Change, 11, 501507, https://doi.org/10.1038/s41558-021-01039-0.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Pan, S., and Coauthors, 2020: Larger sensitivity of Arctic precipitation phase to aerosol than greenhouse gas forcing. Geophys. Res. Lett., 47, e2020GL090452, https://doi.org/10.1029/2020GL090452.

    • Search Google Scholar
    • Export Citation
  • Patnaude, R., and M. Diao, 2020: Aerosol indirect effects on cirrus clouds based on global aircraft observations. Geophys. Res. Lett., 47, e2019GL086550, https://doi.org/10.1029/2019GL086550.

    • Search Google Scholar
    • Export Citation
  • Persad, G. G., 2023: The dependence of aerosols’ global and local precipitation impacts on the emitting region. Atmos. Chem. Phys., 23, 34353452, https://doi.org/10.5194/acp-23-3435-2023.

    • Search Google Scholar
    • Export Citation
  • Persad, G. G., and K. Caldeira, 2018: Divergent global-scale temperature effects from identical aerosols emitted in different regions. Nat. Commun., 9, 3289, https://doi.org/10.1038/s41467-018-05838-6.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and M. B. Baker, 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372, 250252, https://doi.org/10.1038/372250a0.

    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2014: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., 42, 26032626, https://doi.org/10.1007/s00382-013-1945-z.

    • Search Google Scholar
    • Export Citation
  • Raghuraman, S. P., D. Paynter, R. Menzel, and V. Ramaswamy, 2023: Forcing, cloud feedbacks, cloud masking, and internal variability in the cloud radiative effect satellite record. J. Climate, 36, 41514167, https://doi.org/10.1175/JCLI-D-22-0555.1.

    • Search Google Scholar
    • Export Citation
  • Raghuraman, S. P., B. Medeiros, and A. Gettelman, 2024: Observational quantification of tropical high cloud changes and feedbacks. J. Geophys. Res. Atmos., 129, e2023JD039364, https://doi.org/10.1029/2023JD039364.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., and Coauthors, 2021: Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn., 12, 13931411, https://doi.org/10.5194/esd-12-1393-2021.

    • Search Google Scholar
    • Export Citation
  • Rugenstein, M., M. Zelinka, K. B. Karnauskas, P. Ceppi, and T. Andrews, 2023: Patterns of surface warming matter for climate sensitivity. Eos, 104, https://doi.org/10.1029/2023EO230411.

  • Seager, R., N. Henderson, and M. Cane, 2022: Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Climate, 35, 45714584, https://doi.org/10.1175/JCLI-D-21-0648.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and Coauthors, 2020: An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys., 58, e2019RG000678, https://doi.org/10.1029/2019RG000678.

    • Search Google Scholar
    • Export Citation
  • Shi, X., X. Liu, and K. Zhang, 2015: Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5). Atmos. Chem. Phys., 15, 15031520, https://doi.org/10.5194/acp-15-1503-2015.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., and G. Faluvegi, 2009: Climate response to regional radiative forcing during the twentieth century. Nat. Geosci., 2, 294300, https://doi.org/10.1038/ngeo473.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and Coauthors, 2023: The CESM2 single-forcing large ensemble and comparison to CESM1: Implications for experimental design. J. Climate, 36, 56875711, https://doi.org/10.1175/JCLI-D-22-0666.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. J., and Coauthors, 2020: Effective radiative forcing and adjustments in CMIP6 models. Atmos. Chem. Phys., 20, 95919618, https://doi.org/10.5194/acp-20-9591-2020.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2022: Attribution of multi-annual to decadal changes in the climate system: The Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP). Front. Climate, 4, 955414, https://doi.org/10.3389/fclim.2022.955414.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665, https://doi.org/10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., 2017: Aerosol effects on climate via mixed-phase and ice clouds. Annu. Rev. Earth Planet. Sci., 45, 199222, https://doi.org/10.1146/annurev-earth-060115-012240.

    • Search Google Scholar
    • Export Citation
  • Szopa, S., and Coauthors, 2021: Short-lived climate forcers. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 817–922, https://doi.org/10.1017/9781009157896.008.

  • Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352, 224227, https://doi.org/10.1126/science.aad5300.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations, PCMDI Rep. 60, 28 pp.

  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, https://doi.org/10.1016/0004-6981(74)90004-3.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., B. J. Soden, W. Yang, and G. A. Vecchi, 2021: Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophys. Res. Lett., 48, e2020GL091024, https://doi.org/10.1029/2020GL091024.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., X. Liu, C. Hoose, and B. Wang, 2014: Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5. Atmos. Chem. Phys., 14, 10 41110 430, https://doi.org/10.5194/acp-14-10411-2014.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2017: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geosci. Model Dev., 10, 359384, https://doi.org/10.5194/gmd-10-359-2017.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., E. J. Highwood, B. B. B. Booth, and K. S. Carslaw, 2015: Quantifying sources of inter-model diversity in the cloud albedo effect. Geophys. Res. Lett., 42, 15681575, https://doi.org/10.1002/2015GL063301.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C. J., Y. Dong, C. Proistosecu, K. C. Armour, and D. S. Battisti, 2022: Systematic climate model biases in the large‐scale patterns of recent sea‐surface temperature and sea‐level pressure change. Geophys. Res. Lett., 49, e2022GL100011, https://doi.org/10.1029/2022GL100011.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, https://doi.org/10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., D. A. Randall, M. J. Webb, and S. A. Klein, 2017: Clearing clouds of uncertainty. Nat. Climate Change, 7, 674678, https://doi.org/10.1038/nclimate3402.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Search Google Scholar
    • Export Citation
  • Zhao, A., D. S. Stevenson, and M. A. Bollasina, 2019: Climate forcing and response to greenhouse gases, aerosols, and ozone in CESM1. J. Geophys. Res. Atmos., 124, 13 87613 894, https://doi.org/10.1029/2019JD030769.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2017: Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green’s function approach. J. Adv. Model. Earth Syst., 9, 21742189, https://doi.org/10.1002/2017MS001096.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5663 5663 0
Full Text Views 2802 2802 772
PDF Downloads 255 255 19