Low Cloud–SST Variability over the Summertime Subtropical Northeast Pacific: Role of Extratropical Atmospheric Modes

Ayumu Miyamoto Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Ayumu Miyamoto in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6983-5116
and
Shang-Ping Xie Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Over the subtropical Northeast Pacific (NEP), highly reflective low clouds interact with underlying sea surface temperature (SST) to constitute a local positive feedback. Recent modeling studies showed that, together with wind–evaporation–SST (WES) feedback, the summertime low cloud–SST feedback promotes nonlocal trade wind variations, modulating subsequent evolution of El Niño–Southern Oscillation (ENSO). This study aims to identify drivers of summertime low-cloud variations, using satellite observations and global atmosphere model simulations forced with observed SST. A transbasin teleconnection is identified, where the north tropical Atlantic (NTA) warming induced by the North Atlantic Oscillation (NAO) increases precipitation, exciting warm Rossby waves that extend into the NEP. The resultant enhancement of static stability promotes summertime low cloud–SST variability. By regressing out the effects of the preceding ENSO and NTA SST, atmospheric internal variability over the extratropical North Pacific, including the North Pacific Oscillation (NPO), is found to drive the NEP cooling by latent heat loss and subsequent summer low cloud–SST variability. With the help of the background trade winds and WES feedback, the SST anomalies extend southwestward from the low-cloud region, accompanied by ENSO in the following winter. This suggests the nonlocal effects of low clouds identified by recent studies. Analysis of a 500-yr climate model simulation corroborates the NTA and NPO forcing of NEP low cloud–SST variability and subsequent ENSO.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ayumu Miyamoto, aymiyamoto@ucsd.edu

Abstract

Over the subtropical Northeast Pacific (NEP), highly reflective low clouds interact with underlying sea surface temperature (SST) to constitute a local positive feedback. Recent modeling studies showed that, together with wind–evaporation–SST (WES) feedback, the summertime low cloud–SST feedback promotes nonlocal trade wind variations, modulating subsequent evolution of El Niño–Southern Oscillation (ENSO). This study aims to identify drivers of summertime low-cloud variations, using satellite observations and global atmosphere model simulations forced with observed SST. A transbasin teleconnection is identified, where the north tropical Atlantic (NTA) warming induced by the North Atlantic Oscillation (NAO) increases precipitation, exciting warm Rossby waves that extend into the NEP. The resultant enhancement of static stability promotes summertime low cloud–SST variability. By regressing out the effects of the preceding ENSO and NTA SST, atmospheric internal variability over the extratropical North Pacific, including the North Pacific Oscillation (NPO), is found to drive the NEP cooling by latent heat loss and subsequent summer low cloud–SST variability. With the help of the background trade winds and WES feedback, the SST anomalies extend southwestward from the low-cloud region, accompanied by ENSO in the following winter. This suggests the nonlocal effects of low clouds identified by recent studies. Analysis of a 500-yr climate model simulation corroborates the NTA and NPO forcing of NEP low cloud–SST variability and subsequent ENSO.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ayumu Miyamoto, aymiyamoto@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.6295 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., 2019: The Pacific Meridional Mode and ENSO: A review. Curr. Climate Change Rep., 5, 296307, https://doi.org/10.1007/s40641-019-00142-x.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., A. Clement, T. Mauritsen, G. Rädel, and B. Stevens, 2014: Simulating the role of subtropical stratocumulus clouds in driving Pacific climate variability. J. Climate, 27, 51195131, https://doi.org/10.1175/JCLI-D-13-00548.1.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and R. Saravanan, 2001: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 14, 361390, https://doi.org/10.1175/1520-0442(2001)013<0361:AHCMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño—Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, https://doi.org/10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Ding, R., and Coauthors, 2023: North Atlantic Oscillation controls multidecadal changes in the North Tropical Atlantic–Pacific connection. Nat. Commun., 14, 862, https://doi.org/10.1038/s41467-023-36564-3.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, https://doi.org/10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2015: Role of North Tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 31033117, https://doi.org/10.1007/s00382-015-2527-z.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and D. A. Short, 1980: On the use of Earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37, 12331250, https://doi.org/10.1175/1520-0469(1980)037<1233:OTUOER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, K. Sato, and T. Suga, 2010: Improved description of global mixed-layer depth using Argo profiling floats. J. Oceanogr., 66, 773787, https://doi.org/10.1007/s10872-010-0063-3.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, A. Behrangi, D. T. Bolvin, E. J. Nelkin, G. Gu, and M. R. Ehsani, 2023: The new version 3.2 Global Precipitation Climatology Project (GPCP) monthly and daily precipitation products. J. Climate, 36, 76357655, https://doi.org/10.1175/JCLI-D-23-0123.1.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2018: Surface irradiances of edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 45014527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006%3C1587:TSCOLS%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401155, https://doi.org/10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koshiro, T., and M. Shiotani, 2014: Relationship between low stratiform cloud amount and estimated inversion strength in the lower troposphere over the global ocean in terms of cloud types. J. Meteor. Soc. Japan, 92, 107120, https://doi.org/10.2151/jmsj.2014-107.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Vialard, Y.-G. Ham, J.-Y. Yu, and M. Lengaigne, 2020: ENSO remote forcing: Influence of climate variability outside the tropical Pacific. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 249–265, https://doi.org/10.1002/9781119548164.ch11.

  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Search Google Scholar
    • Export Citation
  • Luongo, M. T., S.-P. Xie, I. Eisenman, Y.-T. Hwang, and H.-Y. Tseng, 2023: A pathway for Northern Hemisphere extratropical cooling to elicit a tropical response. Geophys. Res. Lett., 50, e2022GL100719, https://doi.org/10.1029/2022GL100719.

    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and H. Xu, 2017: Contributions of the North Pacific meridional mode to ensemble spread of ENSO prediction. J. Climate, 30, 91679181, https://doi.org/10.1175/JCLI-D-17-0182.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, H. Xu, J. Zhao, and L. Zhang, 2021: Cross-basin interactions between the tropical Atlantic and Pacific in the ECMWF hindcasts. J. Climate, 34, 24592472, https://doi.org/10.1175/JCLI-D-20-0140.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Search Google Scholar
    • Export Citation
  • Metz, W., 1991: Optimal relationship of large-scale flow patterns and the barotropic feedback due to high-frequency eddies. J. Atmos. Sci., 48, 11411159, https://doi.org/10.1175/1520-0469(1991)048%3C1141:OROLSF%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Middlemas, E., A. Clement, and B. Medeiros, 2019: Contributions of atmospheric and oceanic feedbacks to subtropical northeastern sea surface temperature variability. Climate Dyn., 53, 68776890, https://doi.org/10.1007/s00382-019-04964-1.

    • Search Google Scholar
    • Export Citation
  • Miyamoto, A., H. Nakamura, and T. Miyasaka, 2018: Influence of the subtropical high and storm track on low-cloud fraction and its seasonality over the south Indian Ocean. J. Climate, 31, 40174039, https://doi.org/10.1175/JCLI-D-17-0229.1.

    • Search Google Scholar
    • Export Citation
  • Miyamoto, A., H. Nakamura, S.-P. Xie, T. Miyasaka, and Y. Kosaka, 2023: Radiative impacts of Californian marine low clouds on North Pacific climate in a global climate model. J. Climate, 36, 84438459, https://doi.org/10.1175/JCLI-D-23-0153.1.

    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, B. Taguchi, H. Tokinaga, H. Tatebe, and H. Nakamura, 2024: Northern Hemisphere winter atmospheric teleconnections are intensified by extratropical ocean-atmosphere coupling. Commun. Earth Environ., 5, 124, https://doi.org/10.1038/s43247-024-01282-1.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and C. R. Mechoso, 2020: Relative contributions of atmospheric, oceanic, and coupled processes to North Pacific and North Atlantic variability. Geophys. Res. Lett., 47, e2019GL086321, https://doi.org/10.1029/2019GL086321.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., C. R. Mechoso, and M. J. DeFlorio, 2018: Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific. Climate Dyn., 50, 955969, https://doi.org/10.1007/s00382-017-3651-8.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 2005: Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing. J. Geophys. Res., 110, D08206, https://doi.org/10.1029/2004JD005600.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7, 19151925, https://doi.org/10.1175/1520-0442(1994)007<1915:IVISCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of low clouds in summertime atmosphere–ocean interactions over the North Pacific. J. Climate, 11, 24822490, https://doi.org/10.1175/1520-0442(1998)011%3C2482:ROLCIS%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., P. Hubanks, K. Meyer, and M. D. King, 2015: MODIS Atmosphere L3 daily product. NASA MODIS Adaptive Processing System. Goddard Space Flight Center, accessed 6 January 2022, https://modis.gsfc.nasa.gov/data/dataprod/mod08.php.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., Y.-G. Ham, S.-K. Lee, M. Martín-Rey, I. P. Sánchez, and R. R. Rodrigues, 2020: Interacting interannual variability of the Pacific and Atlantic oceans. Interaction Climates of Ocean Basins Observations, Mechanisms, Predictability, and Impacts, C. R. Mechoso, Ed., Cambridge University Press, 120–152, https://doi.org/10.1017/9781108610995.005.

  • Rogers, J. C., 1981: The North Pacific oscillation. J. Climatol., 1, 3957, https://doi.org/10.1002/joc.3370010106.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather v. Mem. Roy. Meteor. Soc., 4, 5384.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109%3C0784:TITGHF%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note NCAR/TN-317+STR, 212 pp., https://atmos.uw.edu/CloudMap/Atlases/DistOcean.pdf.

  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2024: Subtropical climate: Trade winds and low clouds. Coupled Atmosphere-Ocean Dynamics: From El Niño to Climate Change, Elsevier Science, 139–163, https://doi.org/10.1016/C2021-0-02107-6.

  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142, https://doi.org/10.1029/147GM07.

  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J.-C., Z. Lv, I. Richter, Y. Zhang, and X. Lin, 2022: Inter-model spread of north tropical Atlantic trans-basin effect substantially biases tropical Pacific Sea surface temperature multiyear prediction. Geophys. Res. Lett., 49, e2022GL098620, https://doi.org/10.1029/2022GL098620.

    • Search Google Scholar
    • Export Citation
  • Yang, L., S.-P. Xie, S. S. P. Shen, J.-W. Liu, and Y.-T. Hwang, 2023: Low cloud–SST feedback over the subtropical northeast Pacific and the remote effect on ENSO variability. J. Climate, 36, 441452, https://doi.org/10.1175/JCLI-D-21-0902.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., P.-K. Kao, H. Paek, H.-H. Hsu, C.-W. Hung, M.-M. Lu, and S.-I. An, 2015: Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J. Climate, 28, 651662, https://doi.org/10.1175/JCLI-D-14-00347.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2021: Pacific meridional modes without equatorial Pacific influence. J. Climate, 34, 52855301, https://doi.org/10.1175/JCLI-D-20-0573.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S.-Y. Yu, D. J. Amaya, Y. Kosaka, M. F. Stuecker, J.-C. Yang, and X. Lin, 2022: Atmospheric forcing of the Pacific Meridional Mode: Tropical Pacific-driven versus internal variability. Geophys. Res. Lett., 49, e2022GL098148, https://doi.org/10.1029/2022GL098148.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1764 1764 0
Full Text Views 836 836 186
PDF Downloads 276 276 16