Large-Scale Surface Air Temperature Bias in Summer over the CONUS and Its Relationship to Tropical Central Pacific Convection in the UFS Prototype 8

Nakbin Choi Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Nakbin Choi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8696-5916
and
Cristiana Stan Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Cristiana Stan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study aims to understand the source of surface air temperature bias over the contiguous United States (CONUS) during boreal summer (June–September) in the Unified Forecast System (UFS) coupled model prototype 8 (P8), developed by the National Centers for Environmental Prediction (NCEP) and the National Oceanic and Atmospheric Administration (NOAA). The focus is on the subseasonal variability defined as a weekly average in weeks 2–5 of forecast leads (total 224 cases; 4 weeks × 2 initialization dates × 4 months × 7 years). The large-scale surface air temperature bias pattern is extracted using the empirical orthogonal function (EOF) analysis. The associated principal component describes the variability of bias for each reforecasting week throughout the 2011–17 reforecasting period. The leading EOF of surface air temperature bias exhibits an east–west dipole pattern over the CONUS, explaining 31.6% of the total variability of weekly temperature bias. This bias pattern is strongly related to the upper-level Rossby wave induced by a bias in convection over the central tropical Pacific. Furthermore, the mean bias of background flow in the extratropics degrades the representation of teleconnections from the tropics to the midlatitudes. UFS P8 has weaker zonal wind over the North Pacific with stronger vertical wind shear than the ERA5 reanalysis. The weak zonal wind hampers the Rossby wave’s propagation, while strong vertical shear reduces its amplitude.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nakbin Choi, nchoi21@gmu.edu

Abstract

This study aims to understand the source of surface air temperature bias over the contiguous United States (CONUS) during boreal summer (June–September) in the Unified Forecast System (UFS) coupled model prototype 8 (P8), developed by the National Centers for Environmental Prediction (NCEP) and the National Oceanic and Atmospheric Administration (NOAA). The focus is on the subseasonal variability defined as a weekly average in weeks 2–5 of forecast leads (total 224 cases; 4 weeks × 2 initialization dates × 4 months × 7 years). The large-scale surface air temperature bias pattern is extracted using the empirical orthogonal function (EOF) analysis. The associated principal component describes the variability of bias for each reforecasting week throughout the 2011–17 reforecasting period. The leading EOF of surface air temperature bias exhibits an east–west dipole pattern over the CONUS, explaining 31.6% of the total variability of weekly temperature bias. This bias pattern is strongly related to the upper-level Rossby wave induced by a bias in convection over the central tropical Pacific. Furthermore, the mean bias of background flow in the extratropics degrades the representation of teleconnections from the tropics to the midlatitudes. UFS P8 has weaker zonal wind over the North Pacific with stronger vertical wind shear than the ERA5 reanalysis. The weak zonal wind hampers the Rossby wave’s propagation, while strong vertical shear reduces its amplitude.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nakbin Choi, nchoi21@gmu.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.1651 MB)
Save
  • Adcroft, A., and Coauthors, 2019: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Search Google Scholar
    • Export Citation
  • Bai, H., and Coauthors, 2023: The impact of tropical SST biases on the S2S precipitation forecast skill over the contiguous United States in the UFS global coupled model. Wea. Forecasting, 38, 937952, https://doi.org/10.1175/WAF-D-22-0162.1.

    • Search Google Scholar
    • Export Citation
  • Barton, N., R. Grumbine, D. Dukhovskoy, P. Pegion, and A. Mehra, 2023: Diagnosing Sea Ice in the Unified Forecast System (UFS). Environmental Modeling Center (EMC)/National Oceanic and Atmospheric Administration (NOAA), 21 pp., https://epic.noaa.gov/wp-content/uploads/2023/08/UIFCW-2023-Fri-3.-Barton_Neil_Diagnosing-Sea-Ice-in-the-Unified-Forecast-System-UFS_.pdf.

  • Chin, M., R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson, 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24 67124 687, https://doi.org/10.1029/2000JD900384.

    • Search Google Scholar
    • Export Citation
  • Coelho, C. A. S., and Coauthors, 2016: The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections. Climate Dyn., 46, 37373752, https://doi.org/10.1007/s00382-015-2800-1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2020: SPEAR: The next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst., 12, e2019MS001895, https://doi.org/10.1029/2019MS001895.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., P. Gentine, M. B. Ek, and G. Balsamo, 2019: Land surface processes relevant to sub-seasonal to seasonal (S2S) prediction. Sub-Seasonal to Seasonal Prediction, Elsevier, 165–181.

  • Domeisen, D. I. V., and Coauthors, 2020: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and Coauthors, 2022: Advances in the subseasonal prediction of extreme events: Relevant case studies across the globe. Bull. Amer. Meteor. Soc., 103, E1473E1501, https://doi.org/10.1175/BAMS-D-20-0221.1.

    • Search Google Scholar
    • Export Citation
  • Fandry, C. B., and L. M. Leslie, 1984: The effects of vertical shear and stratification on stationary Rossby waves. Geophys. Astrophys. Fluid Dyn., 29, 305332, https://doi.org/10.1080/03091928408248193.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546561, https://doi.org/10.1002/qj.2401.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Coauthors, 2022: The reanalysis for the Global Ensemble Forecast System, version 12. Mon. Wea. Rev., 150, 5979, https://doi.org/10.1175/MWR-D-21-0023.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Jenney, A. M., K. M. Nardi, E. A. Barnes, and D. A. Randall, 2019: The seasonality and regionality of MJO impacts on North American temperature. Geophys. Res. Lett., 46, 91939202, https://doi.org/10.1029/2019GL083950.

    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, and R. Seager, 2021: Assessing ENSO summer teleconnections, impacts, and predictability in North America. J. Climate, 34, 36293643, https://doi.org/10.1175/JCLI-D-20-0761.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and C. Stan, 2022: Prediction of extreme events in precipitation and temperature over CONUS during boreal summer in the UFS coupled model. Climate Dyn., 59, 109125, https://doi.org/10.1007/s00382-021-06120-0.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and Coauthors, 2021: Sources of subseasonal predictability over CONUS during boreal summer. J. Climate, 34, 32733294, https://doi.org/10.1175/JCLI-D-20-0586.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Frederiksen, D. Straus, and C. Stan, 2019: Tropical-extratropical interactions and teleconnections. Sub-Seasonal to Seasonal Prediction, Elsevier, 143–164.

  • Meehl, G. A., 1995: Global coupled general circulation models. Bull. Amer. Meteor. Soc., 76, 951957, https://doi.org/10.1175/1520-0477-76.6.951.

    • Search Google Scholar
    • Export Citation
  • Merz, B., and Coauthors, 2020: Impact forecasting to support emergency management of natural hazards. Rev. Geophys., 58, e2020RG000704, https://doi.org/10.1029/2020RG000704.

    • Search Google Scholar
    • Export Citation
  • Molod, A., and Coauthors, 2020: GEOS-S2S version 2: The GMAO high-resolution coupled model and assimilation system for seasonal prediction. J. Geophys. Res. Atmos., 125, e2019JD031767, https://doi.org/10.1029/2019JD031767.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 19691982, https://doi.org/10.1007/s00382-013-1782-0.

    • Search Google Scholar
    • Export Citation
  • Park, C.-H., J. Choi, S.-W. Son, D. Kim, S.-W. Yeh, and J.-S. Kug, 2023: Sub-seasonal variability of ENSO teleconnections in western North America and its prediction skill. J. Geophys. Res. Atmos., 128, e2022JD037985, https://doi.org/10.1029/2022JD037985.

    • Search Google Scholar
    • Export Citation
  • Peng, P., and A. Kumar, 2005: A large ensemble analysis of the influence of tropical SSTs on seasonal atmospheric variability. J. Climate, 18, 10681085, https://doi.org/10.1175/JCLI-3314.1.

    • Search Google Scholar
    • Export Citation
  • Rehbein, A., T. Ambrizzi, S. Ibarra-Espinosa, and L. M. M. Dutra, 2020: Rossby wave ray tracing v0.1.0. Accessed 23 January 2024, https://github.com/salvatirehbein/raytracing.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., A. Kumar, M. Peña, and F. Vitart, 2015: Improving and promoting subseasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 96, ES49ES53, https://doi.org/10.1175/BAMS-D-14-00139.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., F. Vitart, and S. J. Camargo, 2020: Subseasonal to seasonal prediction of weather to climate with application to tropical cyclones. J. Geophys. Res. Atmos., 125, e2018JD029375, https://doi.org/10.1029/2018JD029375.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 34833517, https://doi.org/10.1175/JCLI3812.1.

  • Saravanan, R., and P. Chang, 2019: Midlatitude mesoscale ocean-atmosphere interaction and its relevance to S2S prediction. Sub-Seasonal to Seasonal Prediction, Elsevier, 183–200.

  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610, https://doi.org/10.1175/JAS3938.1.

    • Search Google Scholar
    • Export Citation
  • Seo, E., P. A. Dirmeyer, M. Barlage, H. Wei, and M. Ek, 2024: Evaluation of land–atmosphere coupling processes and climatological bias in the UFS global coupled model. J. Hydrometeor., 25, 161175, https://doi.org/10.1175/JHM-D-23-0097.1.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and J. M. Slingo, 1988: The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 10271062, https://doi.org/10.1002/qj.49711448209.

    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and Coauthors, 2022: Advances in the prediction of MJO teleconnections in the S2S forecast systems. Bull. Amer. Meteor. Soc., 103, E1426E1447, https://doi.org/10.1175/BAMS-D-21-0130.1.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and Coauthors, 2023: The impact of tropical Pacific SST biases on the S2S forecast skill over North America in the UFS global coupled model. J. Climate, 36, 24392456, https://doi.org/10.1175/JCLI-D-22-0196.1.

    • Search Google Scholar
    • Export Citation
  • Stefanova, L., and Coauthors, 2022: Description and results from UFS coupled prototypes for future global, ensemble and seasonal forecasts at NCEP. NCEP Office Note 510, 201 pp., https://doi.org/10.25923/knxm-kz26.

  • Sun, S., R. Bleck, S. G. Benjamin, B. W. Green, and G. A. Grell, 2018: Subseasonal forecasting with an icosahedral, vertically quasi-Lagrangian coupled model. Part I: Model overview and evaluation of systematic errors. Mon. Wea. Rev., 146, 16011617, https://doi.org/10.1175/MWR-D-18-0006.1.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55, 35653582, https://doi.org/10.1175/1520-0469(1998)055<3565:SRTTHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2017: Madden—Julian oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 22102220, https://doi.org/10.1002/qj.3079.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, https://doi.org/10.1002/qj.623.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2019: Sub-seasonal to seasonal prediction of weather extremes. Sub-Seasonal to Seasonal Prediction, Elsevier, 365–386.

  • White, C. J., and Coauthors, 2017: Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteor. Appl., 24, 315325, https://doi.org/10.1002/met.1654.

    • Search Google Scholar
    • Export Citation
  • White, C. J., and Coauthors, 2022: Advances in the application and utility of subseasonal-to-seasonal predictions. Bull. Amer. Meteor. Soc., 103, E1448E1472, https://doi.org/10.1175/BAMS-D-20-0224.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Principal component (EOF) analysis. Statistical Methods in the Atmospheric Sciences, International Geophysics, Vol. 100, Academic Press, 519–562.

  • Williams, K. D., and Coauthors, 2018: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J. Adv. Model. Earth Syst., 10, 357380, https://doi.org/10.1002/2017MS001115.

    • Search Google Scholar
    • Export Citation
  • Williams, N. C., A. A. Scaife, and J. A. Screen, 2023: Underpredicted ENSO teleconnections in seasonal forecasts. Geophys. Res. Lett., 50, e2022GL101689, https://doi.org/10.1029/2022GL101689.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and B. J. Hoskins, 1996: Propagation of Rossby waves of nonzero frequency. J. Atmos. Sci., 53, 23652378, https://doi.org/10.1175/1520-0469(1996)053<2365:PORWON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., S. Xie, S. A. Klein, H.-y. Ma, S. Tang, K. V. Weverberg, C. J. Morcrette, and J. Petch, 2018: CAUSES: Diagnosis of the summertime warm bias in CMIP5 climate models at the ARM Southern Great Plains site. J. Geophys. Res. Atmos., 123, 29682992, https://doi.org/10.1002/2017JD027200.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3673 3673 0
Full Text Views 1385 1385 436
PDF Downloads 202 202 36