Temporal Variation of Relationships between Circulation Modes and Surface Temperature in the Twentieth Century in Winter

Martin Hynčica Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
Department of Environment, Faculty of Environment, Jan Evangelista Purkyně University, Ústí nad Labem, Czechia

Search for other papers by Martin Hynčica in
Current site
Google Scholar
PubMed
Close
and
Radan Huth Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czechia

Search for other papers by Radan Huth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Modes of low-frequency variability of atmospheric circulation undergo decadal variations, which affect their spatiotemporal impact on climatic variables on long time scales. Previous studies focused either to one circulation mode or to limited geographical areas. Here, the topic is substantially extended as we provide an overview of long-term variations of all detected circulation modes in the northern extratropics in winter and their impact on relationships with temperature during the twentieth century. Circulation modes are identified by rotated principal component analysis of 500-hPa geopotential heights in the ERA-20C reanalysis; gridded surface temperature data are gained from the Climatic Research Unit Time Series (CRUTS) dataset. Temporal variations of relationships are evaluated by 15-yr running correlations between the circulation modes and surface temperature at all land grid points. Time series of running correlations with all nine circulation modes at all grid points are clustered using the partitioning around medoids (PAM) method into 18 clusters. Both composite maps and temperature advection at the 850-hPa level during specific periods of strengthened, weakened, and normal relationships with surface temperature are used for the determination of mechanisms responsible for the variation of relationships. The main mechanisms are changes in the location, shape, and intensity of centers, and formation or split of centers. These mechanisms affect mainly the intensity and direction of advection, which translate into the magnitude of relationships. Possible causes of changes in the spatial structure of circulation modes are linked with El Niño–Southern Oscillation (ENSO), shifts of the Pacific decadal oscillation (PDO), and long-term changes in the sea ice extent.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martin Hynčica, martin.hyncica@chmi.cz

Abstract

Modes of low-frequency variability of atmospheric circulation undergo decadal variations, which affect their spatiotemporal impact on climatic variables on long time scales. Previous studies focused either to one circulation mode or to limited geographical areas. Here, the topic is substantially extended as we provide an overview of long-term variations of all detected circulation modes in the northern extratropics in winter and their impact on relationships with temperature during the twentieth century. Circulation modes are identified by rotated principal component analysis of 500-hPa geopotential heights in the ERA-20C reanalysis; gridded surface temperature data are gained from the Climatic Research Unit Time Series (CRUTS) dataset. Temporal variations of relationships are evaluated by 15-yr running correlations between the circulation modes and surface temperature at all land grid points. Time series of running correlations with all nine circulation modes at all grid points are clustered using the partitioning around medoids (PAM) method into 18 clusters. Both composite maps and temperature advection at the 850-hPa level during specific periods of strengthened, weakened, and normal relationships with surface temperature are used for the determination of mechanisms responsible for the variation of relationships. The main mechanisms are changes in the location, shape, and intensity of centers, and formation or split of centers. These mechanisms affect mainly the intensity and direction of advection, which translate into the magnitude of relationships. Possible causes of changes in the spatial structure of circulation modes are linked with El Niño–Southern Oscillation (ENSO), shifts of the Pacific decadal oscillation (PDO), and long-term changes in the sea ice extent.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martin Hynčica, martin.hyncica@chmi.cz

Supplementary Materials

    • Supplemental Materials (PDF 7.8813 MB)
Save
  • Araneo, D. C., and R. H. Compagnucci, 2004: Removal of systematic biases in S-mode principal components arising from unequal grid spacing. J. Climate, 17, 394400, https://doi.org/10.1175/1520-0442(2004)017<0394:ROSBIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aru, H., S. Chen, and W. Chen, 2021: Comparisons of the different definitions of the western Pacific pattern and associated winter climate anomalies in Eurasia and North America. Int. J. Climatol., 41, 28402859, https://doi.org/10.1002/joc.6993.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Befort, D. J., S. Wild, T. Kruschke, U. Ulbrich, and G. C. Leckebusch, 2016: Different long-term trends of extra-tropical cyclones and windstorms in ERA-20C and NOAA-20CR reanalyses. Atmos. Sci. Lett., 17, 586595, https://doi.org/10.1002/asl.694.

    • Search Google Scholar
    • Export Citation
  • Beranová, R., and R. Huth, 2008: Time variations of the effects of circulation variability modes on European temperature and precipitation in winter. Int. J. Climatol., 28, 139158, https://doi.org/10.1002/joc.1516.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, H. C., L. C. Shaffrey, K. I. Hodges, and P. L. Vidale, 2018: A critical assessment of the long-term changes in the wintertime surface Arctic Oscillation and Northern Hemisphere storminess in the ERA20C reanalysis. Environ. Res. Lett., 13, 094004, https://doi.org/10.1088/1748-9326/aad5c5.

    • Search Google Scholar
    • Export Citation
  • Börgel, F., C. Frauen, T. Neumann, and H. E. M. Meier, 2020: The Atlantic Multidecadal Oscillation controls the impact of the North Atlantic Oscillation on North European climate. Environ. Res. Lett., 15, 104025, https://doi.org/10.1088/1748-9326/aba925.

    • Search Google Scholar
    • Export Citation
  • Çağlar, F., O. Yetemen, K. P. Chun, and O. L. Sen, 2023: The merit of the North Sea-Caspian pattern in explaining climate variability in the Euro-Mediterranean region. Int. J. Climatol., 43, 46484661, https://doi.org/10.1002/joc.8108.

    • Search Google Scholar
    • Export Citation
  • Castro-Díez, Y., D. Pozo-Vázquez, F. S. Rodrigo, and M. J. Esteban-Parra, 2002: NAO and winter temperature variability in southern Europe. Geophys. Res. Lett., 29, 1160, https://doi.org/10.1029/2001GL014042.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and A. M. W. Yau, 2016: Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets. Climate Dyn., 47, 14351454, https://doi.org/10.1007/s00382-015-2911-8.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and B. Tan, 2019: Two types of the western Pacific pattern, their climate impacts, and the ENSO modulations. J. Climate, 32, 823841, https://doi.org/10.1175/JCLI-D-17-0618.1.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., S. B. Feldstein, B. Tan, and S. Lee, 2017: Formation mechanisms of the Pacific–North American teleconnection with and without its canonical tropical convection pattern. J. Climate, 30, 31393155, https://doi.org/10.1175/JCLI-D-16-0411.1.

    • Search Google Scholar
    • Export Citation
  • Filippi, L., E. Palazzi, J. von Hardenberg, and A. Provenzale, 2014: Multidecadal variations in the relationship between the NAO and winter precipitation in the Hindu Kush–Karakoram. J. Climate, 27, 78907902, https://doi.org/10.1175/JCLI-D-14-00286.1.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, https://doi.org/10.1002/qj.768.

    • Search Google Scholar
    • Export Citation
  • Gao, T., J. Y. Yu, and H. Paek, 2016: Impacts of four Northern-Hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific. Theor. Appl. Climatol., 129, 815831, https://doi.org/10.1007/s00704-016-1801-2.

    • Search Google Scholar
    • Export Citation
  • Ge, Y., and D. Luo, 2023: Winter cold extremes over the eastern North America: Pacific origins of interannual-to-decadal variability. Environ. Res. Lett., 18, 054006, https://doi.org/10.1088/1748-9326/accc49.

    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Search Google Scholar
    • Export Citation
  • He, S., H. Wang, and J. Liu, 2013: Changes in the relationship between ENSO and Asia–Pacific midlatitude winter atmospheric circulation. J. Climate, 26, 33773393, https://doi.org/10.1175/JCLI-D-12-00355.1.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., C. Beck, H. Wanner, and J. Jacobeit, 2015: A review of non-stationarities in climate variability of the last century with focus on the North Atlantic–European sector. Earth-Sci. Rev., 147, 117, https://doi.org/10.1016/j.earscirev.2015.04.009.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., M. P. Hoerling, and C. K. Folland, 2002: Climatic variability over the North Atlantic. Meteorology at the Millennium, International Geophysics Series, Vol. 83, Academic Press, 143–151.

  • Huth, R., 2006: The effect of various methodological options on the detection of leading modes of sea level pressure variability. Tellus, 58A, 121130, https://doi.org/10.1111/j.1600-0870.2006.00158.x.

    • Search Google Scholar
    • Export Citation
  • Hynčica, M., and R. Huth, 2020a: Modes of atmospheric circulation variability in the northern extratropics: A comparison of five reanalyses. J. Climate, 33, 10 70710 726, https://doi.org/10.1175/JCLI-D-19-0904.1.

    • Search Google Scholar
    • Export Citation
  • Hynčica, M., and R. Huth, 2020b: Gridded versus station temperatures: Time evolution of relationships with atmospheric circulation. J. Geophys. Res. Atmos., 125, e2020JD033254, https://doi.org/10.1029/2020JD033254.

    • Search Google Scholar
    • Export Citation
  • Hynčica, M., and R. Huth, 2022: Temporal evolution of relationships between temperature and circulation modes in five reanalyses. Int. J. Climatol., 42, 43914404, https://doi.org/10.1002/joc.7474.

    • Search Google Scholar
    • Export Citation
  • Jo, H.-S., S.-W. Yeh, and S.-K. Lee, 2015: Changes in the relationship in the SST variability between the tropical Pacific and the North Pacific across the 1998/1999 regime shift. Geophys. Res. Lett., 42, 71717178, https://doi.org/10.1002/2015GL065049.

    • Search Google Scholar
    • Export Citation
  • Jung, T., M. Hilmer, E. Ruprecht, S. Kleppek, S. K. Gulev, and O. Zolina, 2003: Characteristics of the recent eastward shift of interannual NAO variability. J. Climate, 16, 33713382, https://doi.org/10.1175/1520-0442(2003)016<3371:COTRES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaufman, L., and P. J. Rousseeuw, 1990: Partitioning around medoids (program pam). Finding Groups in Data: An Introduction to Cluster Analysis, L. Kaufman and P. J. Rousseeuw, Eds., Wiley Series in Probability and Statistics, John Wiley and Sons, 68–125.

  • Krichak, S. O., P. Kishcha, and P. Alpert, 2002: Decadal trends of main Eurasian oscillations and the eastern Mediterranean precipitation. Theor. Appl. Climatol., 72, 209220, https://doi.org/10.1007/s007040200021.

    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, Y.-Y., J.-S. Kug, G.-H. Lim, and M. Watanabe, 2012: Eastward shift of the Pacific/North American pattern on an interdecadal time scale and an associated synoptic eddy feedback. Int. J. Climatol., 32, 11281134, https://doi.org/10.1002/joc.2329.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-C., A. Fujisaki-Manome, and J. Wang, 2022: Recently amplified interannual variability of the Great Lakes ice cover in response to changing teleconnections. J. Climate, 35, 62836300, https://doi.org/10.1175/JCLI-D-21-0448.1.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–West Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • Lionello, P., and M. B. Galati, 2008: Links of the significant wave height distribution in the Mediterranean sea with the Northern Hemisphere teleconnection patterns. Adv. Geosci., 17, 1318, https://doi.org/10.5194/adgeo-17-13-2008.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 28172839, https://doi.org/10.1007/s00382-014-2163-z.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Z. Jian, K. Yoshimura, N. H. Buenning, C. J. Poulsen, and G. J. Bowen, 2015: Recent contrasting winter temperature changes over North America linked to enhanced positive Pacific-North American pattern. Geophys. Res. Lett., 42, 77507757, https://doi.org/10.1002/2015GL065656.

    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., S. M. Vicente-Serrano, E. Morán-Tejeda, J. Lorenzo-Lacruz, A. Kenawy, and M. Beniston, 2011: Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Global Planet. Change, 77, 6276, https://doi.org/10.1016/j.gloplacha.2011.03.003.

    • Search Google Scholar
    • Export Citation
  • Luo, D., and T. Gong, 2006: A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophys. Res. Lett., 33, L24815, https://doi.org/10.1029/2006GL027860.

    • Search Google Scholar
    • Export Citation
  • Luo, D., Z. Zhu, R. Ren, L. Zhong, and C. Wang, 2010: Spatial pattern and zonal shift of the North Atlantic Oscillation. Part I: A dynamical interpretation. J. Atmos. Sci., 67, 28052826, https://doi.org/10.1175/2010JAS3345.1.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., and A. Dell’Aquila, 2012: Decadal climate variability in the Mediterranean region: Roles of large-scale forcings and regional processes. Climate Dyn., 38, 11291145, https://doi.org/10.1007/s00382-011-1056-7.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2021: Decadal variability in the impact of atmospheric circulation patterns on the winter climate of northern Russia. J. Climate, 34, 10051021, https://doi.org/10.1175/JCLI-D-20-0566.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2010: Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J. Climate, 23, 36393656, https://doi.org/10.1175/2010JCLI3553.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. E. Livezey, 1986: Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114, 24882515, https://doi.org/10.1175/1520-0493(1986)114<2488:TEGHTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., 2018: Interdecadal variability of the ENSO teleconnection to the wintertime North Pacific. Climate Dyn., 51, 33333350, https://doi.org/10.1007/s00382-018-4081-y.

    • Search Google Scholar
    • Export Citation
  • Pang, B., A. A. Scaife, R. Lu, R. Ren, and X. Zhao, 2023: Interdecadal variations of the scandinavian pattern. J. Climate, 36, 32753288, https://doi.org/10.1175/JCLI-D-22-0494.1.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-H., B.-M. Kim, G. Pak, M. Yamamoto, F. Vivier, and I. Durand, 2018: A key process of the nonstationary relationship between ENSO and the western Pacific teleconnection pattern. Sci. Rep., 8, 9512, https://doi.org/10.1038/s41598-018-27906-z.

    • Search Google Scholar
    • Export Citation
  • Peterson, K. A., J. Lu, and R. J. Greatbatch, 2003: Evidence of nonlinear dynamics in the eastward shift of the NAO. Geophys. Res. Lett., 30, 1030, https://doi.org/10.1029/2002GL015585.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Search Google Scholar
    • Export Citation
  • Rust, W., J. P. Bloomfield, M. O. Cuthbert, R. Corstanje, and I. P. Holman, 2021: Non-stationary control of the NAO on European rainfall and its implications for water resource management. Hydrol. Process., 35, e14099, https://doi.org/10.1002/hyp.14099.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., and R. L. Fogt, 2018: Artifacts in century-length atmospheric and coupled reanalyses over Antarctica due to historical data availability. Geophys. Res. Lett., 45, 964973, https://doi.org/10.1002/2017GL076226.

    • Search Google Scholar
    • Export Citation
  • Schulte, J. A., and S. Lee, 2017: Strengthening North Pacific influences on United States temperature variability. Sci. Rep., 7, 124, https://doi.org/10.1038/s41598-017-00175-y.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the twentieth century reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Search Google Scholar
    • Export Citation
  • Soulard, N., H. Lin, and B. Yu, 2019: The changing relationship between ENSO and its extratropical response patterns. Sci. Rep., 9, 6507, https://doi.org/10.1038/s41598-019-42922-3.

    • Search Google Scholar
    • Export Citation
  • Tan, B., J. Yuan, Y. Dai, S. B. Feldstein, and S. Lee, 2015: The linkage between the eastern Pacific teleconnection pattern and convective heating over the tropical western Pacific. J. Climate, 28, 57835794, https://doi.org/10.1175/JCLI-D-14-00568.1.

    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., T. J. Osborn, and J. M. Corte-Real, 2002: The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Climate Res., 20, 917, https://doi.org/10.3354/cr020009.

    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., D. Pozo-Vázquez, T. J. Osborn, Y. Castro-Díez, S. Gámiz-Fortis, and M. J. Esteban-Parra, 2004: North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int. J. Climatol., 24, 925944, https://doi.org/10.1002/joc.1048.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dyn., 15, 551559, https://doi.org/10.1007/s003820050299.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and J. I. López-Moreno, 2008: Nonstationary influence of the North Atlantic Oscillation on European precipitation. J. Geophys. Res., 113, D20120, https://doi.org/10.1029/2008JD010382.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2007: Changes in the variability of North Pacific Oscillation around 1975/1976 and its relationship with East Asian winter climate. J. Geophys. Res., 112, D11110, https://doi.org/10.1029/2006JD008054.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Y. Liu, Y. Zhang, W. Chen, and S. Chen, 2018: Time-varying structure of the wintertime Eurasian pattern: Role of the North Atlantic sea surface temperature and atmospheric mean flow. Climate Dyn., 52, 24672479, https://doi.org/10.1007/s00382-018-4261-9.

    • Search Google Scholar
    • Export Citation
  • Wanner, H., S. Brönnimann, C. Casty, D. Gyalistras, J. Luterbacher, C. Schmutz, D. B. Stephenson, and E. Xoplaki, 2001: North Atlantic Oscillation—Concepts and studies. Surv. Geophys., 22, 321381, https://doi.org/10.1023/A:1014217317898.

    • Search Google Scholar
    • Export Citation
  • Xu, T., Z. Shi, H. Wang, and Z. An, 2016: Nonstationary impact of the winter North Atlantic Oscillation and the response of mid-latitude Eurasian climate. Theor. Appl. Climatol., 124 (1–2), 114, https://doi.org/10.1007/s00704-015-1396-z.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., and K. Fan, 2020: Prolonged periodicity and eastward shift of the January North Pacific Oscillation since the mid-1990s and its linkage with sea ice anomalies in the Barents Sea. J. Geophys. Res. Atmos., 125, e2020JD032484, https://doi.org/10.1029/2020JD032484.

    • Search Google Scholar
    • Export Citation
  • Yadav, R. K., K. Rupa Kumar, and M. Rajeevan, 2009: Increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over northwest India winter precipitation. J. Geophys. Res., 114, D12112, https://doi.org/10.1029/2008JD011318.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., Y.-J. Kang, Y. Noh, and A. J. Miller, 2011: The North Pacific climate transitions of the winters of 1976/77 and 1988/89. J. Climate, 24, 11701183, https://doi.org/10.1175/2010JCLI3325.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., D.-W. Yi, M.-K. Sung, and Y. H. Kim, 2018: An eastward shift of the North Pacific Oscillation after the mid-1990s and its relationship with ENSO. Geophys. Res. Lett., 45, 66546660, https://doi.org/10.1029/2018GL078671.

    • Search Google Scholar
    • Export Citation
  • Yu, B., H. Lin, and N. Soulard, 2019: A comparison of North American surface temperature and temperature extreme anomalies in association with various atmospheric teleconnection patterns. Atmosphere, 10, 172, https://doi.org/10.3390/atmos10040172.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., B. Tan, S. B. Feldstein, and S. Lee, 2015: Wintertime North Pacific teleconnection patterns: Seasonal and interannual variability. J. Climate, 28, 82478263, https://doi.org/10.1175/JCLI-D-14-00749.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., M.-K. Sung, J.-H. Park, J.-J. Luo, and J.-S. Kug, 2023: Part I observational study on a new mechanism for North Pacific Oscillation influencing the tropics. npj Climate Atmos. Sci., 6, 15, https://doi.org/10.1038/s41612-023-00336-z.

    • Search Google Scholar
    • Export Citation
  • Zuo, J., H.-L. Ren, W. Li, and L. Wang, 2016: Interdecadal variations in the relationship between the winter North Atlantic Oscillation and temperature in south-central China. J. Climate, 29, 74777493, https://doi.org/10.1175/JCLI-D-15-0873.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1047 1047 0
Full Text Views 451 451 104
PDF Downloads 162 162 19