Climate Projection of Tropical Cyclone Lifetime in the Western North Pacific Basin

The-Anh Vu Department of Earth and Atmospheric Sciences, Indiana University Bloomington, Bloomington, Indiana

Search for other papers by The-Anh Vu in
Current site
Google Scholar
PubMed
Close
,
Chanh Kieu Department of Earth and Atmospheric Sciences, Indiana University Bloomington, Bloomington, Indiana

Search for other papers by Chanh Kieu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8947-8534
,
Scott M. Robeson Department of Geography, Indiana University Bloomington, Bloomington, Indiana

Search for other papers by Scott M. Robeson in
Current site
Google Scholar
PubMed
Close
,
Paul Staten Department of Earth and Atmospheric Sciences, Indiana University Bloomington, Bloomington, Indiana

Search for other papers by Paul Staten in
Current site
Google Scholar
PubMed
Close
, and
Ben Kravitz Department of Earth and Atmospheric Sciences, Indiana University Bloomington, Bloomington, Indiana
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Ben Kravitz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the potential changes in tropical cyclone (TC) lifetime in the western North Pacific basin are examined for different future climates. Using homogeneous 9-km-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model, we show that TC-averaged lifetime displays insignificant change under both low and high greenhouse gas concentration scenarios. However, more noticeable changes in the tails of TC lifetime statistics are captured in our downscaling simulations, with more frequent long-lived TCs (lifetime of 8–11 days) and less short-lived TCs (lifetime of 3–5 days). Unlike present-day simulations, it is found that the correlation between TC lifetime and the Niño index is relatively weak and insignificant in all future downscaling simulations, thus offering little explanation for these changes in TC lifetime statistics based on El Niño–Southern Oscillation. More detailed analyses of TC track distribution in the western North Pacific basin reveal, nevertheless, a noticeable shift of TC track patterns toward the end of the twenty-first century. Such a change in TC track climatology results in an overall longer duration of TCs over the open ocean, which is consistent across future scenarios and periods examined in this study. This shift in the TC track pattern is ultimately linked to changes in the western North Pacific subtropical high, which retreats to the south during July and to the east during August–September. The results obtained in this study provide new insights into how large-scale circulations can affect TC lifetime in the western North Pacific basin in warmer climates.

Significance Statement

Using high-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model under low- and high-emission scenarios, this study shows that the basin-averaged tropical cyclone (TC) lifetime in the western North Pacific (WNP) basin has no noticeable change under both warmer climate scenarios, despite an overall increase in TC maximum intensity. However, the tails of the TC lifetime distribution display significant changes, with more long-lived (6–20 days) TCs but less short-lived (3–5 days) TCs in the future. These changes in TC lifetime statistics are caused by the shift of the North Pacific subtropical high, which alters large-scale steering flows and TC track patterns. These results help explain why previous studies on TC lifetime projections have been inconclusive in the WNP basin and provide new insights into how large-scale circulations can modulate TC lifetime in a warmer climate.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chanh Kieu, ckieu@iu.edu

Abstract

In this study, the potential changes in tropical cyclone (TC) lifetime in the western North Pacific basin are examined for different future climates. Using homogeneous 9-km-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model, we show that TC-averaged lifetime displays insignificant change under both low and high greenhouse gas concentration scenarios. However, more noticeable changes in the tails of TC lifetime statistics are captured in our downscaling simulations, with more frequent long-lived TCs (lifetime of 8–11 days) and less short-lived TCs (lifetime of 3–5 days). Unlike present-day simulations, it is found that the correlation between TC lifetime and the Niño index is relatively weak and insignificant in all future downscaling simulations, thus offering little explanation for these changes in TC lifetime statistics based on El Niño–Southern Oscillation. More detailed analyses of TC track distribution in the western North Pacific basin reveal, nevertheless, a noticeable shift of TC track patterns toward the end of the twenty-first century. Such a change in TC track climatology results in an overall longer duration of TCs over the open ocean, which is consistent across future scenarios and periods examined in this study. This shift in the TC track pattern is ultimately linked to changes in the western North Pacific subtropical high, which retreats to the south during July and to the east during August–September. The results obtained in this study provide new insights into how large-scale circulations can affect TC lifetime in the western North Pacific basin in warmer climates.

Significance Statement

Using high-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model under low- and high-emission scenarios, this study shows that the basin-averaged tropical cyclone (TC) lifetime in the western North Pacific (WNP) basin has no noticeable change under both warmer climate scenarios, despite an overall increase in TC maximum intensity. However, the tails of the TC lifetime distribution display significant changes, with more long-lived (6–20 days) TCs but less short-lived (3–5 days) TCs in the future. These changes in TC lifetime statistics are caused by the shift of the North Pacific subtropical high, which alters large-scale steering flows and TC track patterns. These results help explain why previous studies on TC lifetime projections have been inconclusive in the WNP basin and provide new insights into how large-scale circulations can modulate TC lifetime in a warmer climate.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chanh Kieu, ckieu@iu.edu
Save
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561, https://doi.org/10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 18471856, https://doi.org/10.1007/s00382-013-2011-6.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2021: Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ., 2, 628644, https://doi.org/10.1038/s43017-021-00199-z.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and Coauthors, 2023: An update on the influence of natural climate variability and anthropogenic climate change on tropical cyclones. Trop. Cyclone Res. Rev., 12, 216239, https://doi.org/10.1016/j.tcrr.2023.10.001.

    • Search Google Scholar
    • Export Citation
  • Cha, E. J., T. R. Knutson, T.-C. Lee, M. Ying, and T. Nakaegawa, 2020: Third assessment on impacts of climate change on tropical cyclones in the typhoon committee region—Part II: Future projections. Trop. Cyclone Res. Rev., 9, 7586, https://doi.org/10.1016/j.tcrr.2020.04.005.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, https://doi.org/10.1175/1520-0442(2000)013%3C2960:TCAOTW%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc., 464A, 249272, https://doi.org/10.1098/rspa.2007.0183.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 45904602, https://doi.org/10.1175/3240.1.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694.

    • Search Google Scholar
    • Export Citation
  • Chung, P.-H., C.-H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 116, D13111, https://doi.org/10.1029/2010JD015554.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., B. J. Soden, G. A. Vecchi, and B. P. Kirtman, 2013: The impact of anthropogenic climate change on North Atlantic tropical cyclone tracks. J. Climate, 26, 40884095, https://doi.org/10.1175/JCLI-D-12-00342.1.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., B. J. Soden, and B. P. Kirtman, 2015: The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. J. Climate, 28, 18061823, https://doi.org/10.1175/JCLI-D-14-00100.1.

    • Search Google Scholar
    • Export Citation
  • Dao, L. T., and J.-Y. Yu, 2022: Changes of local tropical cyclone activity over the South China Sea under global warming in high-resolution atmospheric model projections. Int. J. Climatol., 42, 29652980, https://doi.org/10.1002/joc.7401.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2018: Resolving tropical cyclone intensity in models. Geophys. Res. Lett., 45, 20822087, https://doi.org/10.1002/2017GL076966.

    • Search Google Scholar
    • Export Citation
  • Defforge, C. L., and T. M. Merlis, 2017: Observed warming trend in sea surface temperature at tropical cyclone genesis. Geophys. Res. Lett., 44, 10341040, https://doi.org/10.1002/2016GL071045.

    • Search Google Scholar
    • Export Citation
  • Denis, B., R. Laprise, D. Caya, and J. Côté, 2002: Downscaling ability of one-way nested regional climate models: The big-brother experiment. Climate Dyn., 18, 627646, https://doi.org/10.1007/s00382-001-0201-0.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, https://doi.org/10.1038/326483a0.

  • Gastineau, G., L. Li, and H. L. Treut, 2009: The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Climate, 22, 39934013, https://doi.org/10.1175/2009JCLI2794.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 63356352, https://doi.org/10.1029/98JD02072.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468, https://doi.org/10.1175/1520-0493(1991)119%3C1448:TCTCAA%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • He, C., and T. Zhou, 2015: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean–tropical western Pacific SST gradient. J. Climate, 28, 365380, https://doi.org/10.1175/JCLI-D-13-00494.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2011: The impact of future climate change on TC intensity and structure: A downscaling approach. J. Climate, 24, 46444661, https://doi.org/10.1175/2011JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J.-J. Baik, J.-H. Kim, D.-Y. Gong, and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776, https://doi.org/10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., C.-H. Tsou, P.-C. Hsu, K.-C. Chen, H.-C. Liang, H.-H. Hsu, C.-Y. Tu, and A. Kitoh, 2021: Future changes in tropical cyclone intensity and frequency over the western North Pacific based on 20-km HiRAM and MRI models. J. Climate, 34, 22352251, https://doi.org/10.1175/JCLI-D-20-0417.1.

    • Search Google Scholar
    • Export Citation
  • Huang, X., T. Zhou, J. C. L. Chan, R. Zhan, Z. Chen, and J. Zhao, 2023: Understanding uncertainties in projections of western North Pacific tropical cyclogenesis. Environ. Res. Lett., 18, 114037, https://doi.org/10.1088/1748-9326/ad02ad.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jin, C.-S., C.-H. Ho, J.-H. Kim, D.-K. Lee, D.-H. Cha, and S.-W. Yeh, 2013: Critical role of northern off-equatorial sea surface temperature forcing associated with central Pacific El Niño in more frequent tropical cyclone movements toward East Asia. J. Climate, 26, 25342545, https://doi.org/10.1175/JCLI-D-12-00287.1.

    • Search Google Scholar
    • Export Citation
  • Jin, C.-S., D.-H. Cha, D.-K. Lee, M.-S. Suh, S.-Y. Hong, H.-S. Kang, and C.-H. Ho, 2016: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Climate Dyn., 47, 765778, https://doi.org/10.1007/s00382-015-2869-6.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., P. Marchesiello, C. E. Menkes, J. Lefèvre, E. M. Vincent, M. Lengaigne, and F. Chauvin, 2011: Mesoscale simulation of tropical cyclones in the South Pacific: Climatology and interannual variability. J. Climate, 24, 325, https://doi.org/10.1175/2010JCLI3559.1.

    • Search Google Scholar
    • Export Citation
  • Jullien, S., P. Marchesiello, C. E. Menkes, J. Lefèvre, N. C. Jourdain, G. Samson, and M. Lengaigne, 2014: Ocean feedback to tropical cyclones: Climatology and processes. Climate Dyn., 43, 28312854, https://doi.org/10.1007/s00382-014-2096-6.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kieu, C., M. Zhao, Z. Tan, B. Zhang, and T. Knutson, 2023: On the role of sea surface temperature in the clustering of global tropical cyclone formation. J. Climate, 36, 31453162, https://doi.org/10.1175/JCLI-D-22-0623.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., C.-S. Jin, C.-H. Ho, J. Kim, and J.-H. Kim, 2015: Climatological features of WRF-simulated tropical cyclones over the western North Pacific. Climate Dyn., 44, 32233235, https://doi.org/10.1007/s00382-014-2410-3.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., M.-I. Lee, P. J. Webster, D. Kim, and J. H. Yoo, 2013: A physical basis for the probabilistic prediction of the accumulated tropical cyclone kinetic energy in the western North Pacific. J. Climate, 26, 79817991, https://doi.org/10.1175/JCLI-D-12-00679.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., G. A. Vecchi, T. R. Knutson, W. G. Anderson, T. L. Delworth, A. Rosati, F. Zeng, and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, https://doi.org/10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 10181021, https://doi.org/10.1126/science.279.5353.1018.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565, https://doi.org/10.1175/BAMS-88-10-1549.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, https://doi.org/10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29, 57255739, https://doi.org/10.1175/JCLI-D-16-0076.1.

    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., S. Hagemann, P. Krahe, R. Podzun, and D. Jacob, 2012: The Elbe river flooding 2002 as seen by an extended regional climate model. J. Hydrol., 472–473, 169183, https://doi.org/10.1016/j.jhydrol.2012.09.020.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, J. Camp, S. Wang, M. K. Tippett, and Q. Yang, 2020: Subseasonal predictions of tropical cyclone occurrence and ace in the S2S dataset. Wea. Forecasting, 35, 921938, https://doi.org/10.1175/WAF-D-19-0217.1.

    • Search Google Scholar
    • Export Citation
  • Lee, H., C.-S. Jin, D.-H. Cha, M. Lee, D.-K. Lee, M.-S. Suh, S.-Y. Hong, and H.-S. Kang, 2019: Future change in tropical cyclone activity over the western North Pacific in CORDEX-East Asia multi-RCMs forced by HadGEM2-AO. J. Climate, 32, 50535067, https://doi.org/10.1175/JCLI-D-18-0575.1.

    • Search Google Scholar
    • Export Citation
  • Lee, T.-C., T. R. Knutson, T. Nakaegawa, M. Ying, and E. J. Cha, 2020: Third assessment on impacts of climate change on tropical cyclones in the typhoon committee region—Part I: Observed changes, detection and attribution. Trop. Cyclone Res. Rev., 9 (1), 122, https://doi.org/10.1016/j.tcrr.2020.03.001.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022%3C1065:BPOTSF%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, M., G. A. Vecchi, J. A. Smith, and T. R. Knutson, 2019: Causes of large projected increases in hurricane precipitation rates with global warming. npj Climate Atmos. Sci., 2, 38, https://doi.org/10.1038/s41612-019-0095-3.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. Li, J. Zuo, and Z.-Z. Hu, 2014: Simulation and projection of the western Pacific subtropical high in CMIP5 models. J. Meteor. Res., 28, 327340, https://doi.org/10.1007/s13351-014-3151-2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., F. Boberg, J. H. Christensen, and P. Berg, 2013: Dynamical downscaling with reinitializations: A method to generate finescale climate datasets suitable for impact studies. J. Hydrometeor., 14, 11591174, https://doi.org/10.1175/JHM-D-12-063.1.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2014: Future changes in the western North Pacific tropical cyclone activity projected by a multidecadal simulation with a 16-km global atmospheric GCM. J. Climate, 27, 76227646, https://doi.org/10.1175/JCLI-D-13-00678.1.

    • Search Google Scholar
    • Export Citation
  • McDonald, R. E., D. G. Bleaken, D. R. Cresswell, V. D. Pope, and C. A. Senior, 2005: Tropical storms: Representation and diagnosis in climate models and the impacts of climate change. Climate Dyn., 25, 1936, https://doi.org/10.1007/s00382-004-0491-0.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376, https://doi.org/10.2151/sola.2010-019.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169, https://doi.org/10.1175/2010JCLI3723.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., P.-C. Hsu, O. Arakawa, and T. Li, 2014: Influence of model biases on projected future changes in tropical cyclone frequency of occurrence. J. Climate, 27, 21592181, https://doi.org/10.1175/JCLI-D-13-00436.1.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276, https://doi.org/10.2151/jmsj.84.259.

    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. D. Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., A. Seth, and S. Zebiak, 2003: Reinitialized versus continuous simulations for regional climate downscaling. Mon. Wea. Rev., 131, 28572874, https://doi.org/10.1175/1520-0493(2003)131%3C2857:RVCSFR%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Redmond, G., K. I. Hodges, C. Mcsweeney, R. Jones, and D. Hein, 2015: Projected changes in tropical cyclones over Vietnam and the South China Sea using a 25 km regional climate model perturbed physics ensemble. Climate Dyn., 45, 19832000, https://doi.org/10.1007/s00382-014-2450-8.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and Coauthors, 2020: Subseasonal prediction with and without a well-represented stratosphere in CESM1. Wea. Forecasting, 35, 25892602, https://doi.org/10.1175/WAF-D-20-0029.1.

    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307343, https://doi.org/10.1023/A:1005386312622.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Su, H., J. H. Jiang, C. Zhai, T. J. Shen, J. D. Neelin, G. L. Stephens, and Y. L. Yung, 2014: Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity. J. Geophys. Res. Atmos., 119, 57875805, https://doi.org/10.1002/2014JD021642.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272, https://doi.org/10.2151/jmsj.80.249.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., J. Huangfu, R. Huang, and W. Chen, 2022: Simulation and projection of tropical cyclone activities over the western North Pacific by CMIP6 HighResMIP. J. Climate, 35, 77717794, https://doi.org/10.1175/JCLI-D-21-0760.1.

    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteor., C.-P. Chang and T.N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thanh, N. T., H. D. Cuong, N. X. Hien, and C. Kieu, 2020: Relationship between sea surface temperature and the maximum intensity of tropical cyclones affecting Vietnam’s coastline. Int. J. Climatol., 40, 25272538, https://doi.org/10.1002/joc.6348.

    • Search Google Scholar
    • Export Citation
  • Tran-Quang, D., H. Pham-Thanh, T.-A. Vu, C. Kieu, and T. Phan-Van, 2020: Climatic shift of the tropical cyclone activity affecting Vietnam’s coastal region. J. Appl. Meteor. Climatol., 59, 17551768, https://doi.org/10.1175/JAMC-D-20-0021.1.

    • Search Google Scholar
    • Export Citation
  • Trinh, D. H., H. D. Cuong, D. V. Kham, and C. Kieu, 2021: Remote control of sea surface temperature on the variability of tropical cyclone activity affecting Vietnam’s coastline. J. Appl. Meteor. Climatol., 60, 323339, https://doi.org/10.1175/JAMC-D-20-0170.1.

    • Search Google Scholar
    • Export Citation
  • Tsou, C. H., P.-Y. Huang, C.-Y. Tu, C.-T. Chen, T.-P. Tzeng, and C.-T. Cheng, 2016: Present simulation and future typhoon activity projection over western North Pacific and Taiwan/East Coast of China in 20-km HiRAM climate model. Terr. Atmos. Ocean. Sci., 27, 687703, https://doi.org/10.3319/TAO.2016.06.13.04.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., G. N. Kiladis, and A. Suzuki-Parker, 2011: Convectively coupled Kelvin and easterly waves in a regional climate simulation of the tropics. Climate Dyn., 36, 185203, https://doi.org/10.1007/s00382-009-0697-2.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2019: Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Climate Dyn., 53, 59996033, https://doi.org/10.1007/s00382-019-04913-y.

    • Search Google Scholar
    • Export Citation
  • Vu, T.-A., C. Kieu, D. Chavas, and Q. Wang, 2021: A numerical study of the global formation of tropical cyclones. J. Adv. Model. Earth Syst., 13, e2020MS002207, https://doi.org/10.1029/2020MS002207.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and B. F. Ryan, 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate, 13, 30293036, https://doi.org/10.1175/1520-0442(2000)013%3C3029:TCIINA%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, https://doi.org/10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992618, https://doi.org/10.1175/1520-0477(1997)078%3C2599:ATOLBC%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and T. Zhou, 2008: Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific Subtropical High. Geophys. Res. Lett., 35, L13701, https://doi.org/10.1029/2008GL034584.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 16861698, https://doi.org/10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and H. Zhao, 2012: Dynamically derived tropical cyclone intensity changes over the western North Pacific. J. Climate, 25, 8998, https://doi.org/10.1175/2011JCLI4139.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, https://doi.org/10.1029/2005GL022937.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and Coauthors, 2018: Predicting near-term changes in the Earth system: A large ensemble of initialized decadal prediction simulations using the Community Earth System Model. Bull. Amer. Meteor. Soc., 99, 18671886, https://doi.org/10.1175/BAMS-D-17-0098.1.

    • Search Google Scholar
    • Export Citation
  • Yihui, D., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., C. Takahashi, K. Yasunaga, and R. Shirooka, 2012: Multi-model projection of tropical cyclone genesis frequency over the Western North Pacific: CMIP5 results. SOLA, 8, 137140, https://doi.org/10.2151/sola.2012-034.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., Y. N. Takayabu, and H. Murakami, 2013: Attribution of projected future changes in tropical cyclone passage frequency over the western North Pacific. J. Climate, 26, 40964111, https://doi.org/10.1175/JCLI-D-12-00218.1.

    • Search Google Scholar
    • Export Citation
  • Yonekura, E., and T. M. Hall, 2011: A statistical model of tropical cyclone tracks in the western North Pacific with ENSO-dependent cyclogenesis. J. Appl. Meteor. Climatol., 50, 17251739, https://doi.org/10.1175/2011JAMC2617.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428, https://doi.org/10.2151/jmsj.84.405.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Y. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Climate, 30, 59235941, https://doi.org/10.1175/JCLI-D-16-0597.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. L. Delworth, 2016: Simulated response of the Pacific decadal oscillation to climate change. J. Climate, 29, 59996018, https://doi.org/10.1175/JCLI-D-15-0690.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., and L. Wu, 2014: Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study. Meteor. Atmos. Phys., 125, 89101, https://doi.org/10.1007/s00703-014-0322-8.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., L. Wu, and W. Zhou, 2010: Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the western North Pacific. Adv. Atmos. Sci., 27, 13611371, https://doi.org/10.1007/s00376-010-9161-9.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5433 5433 0
Full Text Views 1466 1466 323
PDF Downloads 261 261 19