The Influence of Anomalous Biomass Emissions on ENSO in CESM2

John T. Fasullo National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by John T. Fasullo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1216-892X
,
Nan Rosenbloom National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Nan Rosenbloom in
Current site
Google Scholar
PubMed
Close
, and
Rebecca Buchholz National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rebecca Buchholz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of biomass burning (BB) aerosols arising from wildfires and agricultural fires on the transient coupled evolution of El Niño–Southern Oscillation (ENSO) is explored in Community Earth System Model, version 2 (CESM2). For both El Niño and La Niña, two 20-member ensembles are generated from initial states that are predisposed to evolve into ENSO events. For each ENSO phase, one ensemble is forced with the observed BB emissions during satellite-era ENSO events while the other is forced with a climatological annual cycle, with the responses to anomalous BB emissions estimated from interensemble differences. It is found that the regional responses to anomalous BB emissions occur mainly during boreal fall, which is also the time of the climatological seasonal maximum in emissions. Transient responses are identified in precipitation, clouds, and radiation in both the tropics and extratropics. At the onset of El Niño, these include increased precipitation in the northern branch of the intertropical convergence zone (ITCZ) and an enhancement of cloud albedo and amount across the Maritime Continent and eastern subtropical Pacific Ocean. Additional responses are identified through the course of El Niño and successive La Niña events, the net effect of which is to strengthen sea surface temperature (SST) anomalies in the eastern Pacific Ocean during El Niño and warm the tropical Pacific Ocean during La Niña. These responses improve the simulation of ENSO power, diversity, and asymmetry in CESM2.

Significance Statement

Biomass burning emissions from both wildfires and agricultural fires during ENSO act as a climate feedback, as they are both driven by fire weather anomalies tied to ENSO and influence clouds, radiation, and precipitation on a global scale. While the largest biomass burning (BB) emissions emanate mainly from Indonesia, other regions also exhibit systematic responses. When simulated in CESM2, the emissions collectively impact the flows of energy across the tropical Pacific Ocean in a spatially and temporally complex fashion, with the net effect of improving CESM2’s simulation of ENSO events.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John T. Fasullo, fasullo@ucar.edu

Abstract

The influence of biomass burning (BB) aerosols arising from wildfires and agricultural fires on the transient coupled evolution of El Niño–Southern Oscillation (ENSO) is explored in Community Earth System Model, version 2 (CESM2). For both El Niño and La Niña, two 20-member ensembles are generated from initial states that are predisposed to evolve into ENSO events. For each ENSO phase, one ensemble is forced with the observed BB emissions during satellite-era ENSO events while the other is forced with a climatological annual cycle, with the responses to anomalous BB emissions estimated from interensemble differences. It is found that the regional responses to anomalous BB emissions occur mainly during boreal fall, which is also the time of the climatological seasonal maximum in emissions. Transient responses are identified in precipitation, clouds, and radiation in both the tropics and extratropics. At the onset of El Niño, these include increased precipitation in the northern branch of the intertropical convergence zone (ITCZ) and an enhancement of cloud albedo and amount across the Maritime Continent and eastern subtropical Pacific Ocean. Additional responses are identified through the course of El Niño and successive La Niña events, the net effect of which is to strengthen sea surface temperature (SST) anomalies in the eastern Pacific Ocean during El Niño and warm the tropical Pacific Ocean during La Niña. These responses improve the simulation of ENSO power, diversity, and asymmetry in CESM2.

Significance Statement

Biomass burning emissions from both wildfires and agricultural fires during ENSO act as a climate feedback, as they are both driven by fire weather anomalies tied to ENSO and influence clouds, radiation, and precipitation on a global scale. While the largest biomass burning (BB) emissions emanate mainly from Indonesia, other regions also exhibit systematic responses. When simulated in CESM2, the emissions collectively impact the flows of energy across the tropical Pacific Ocean in a spatially and temporally complex fashion, with the net effect of improving CESM2’s simulation of ENSO events.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John T. Fasullo, fasullo@ucar.edu
Save
  • Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Search Google Scholar
    • Export Citation
  • Andela, N., and G. R. van der Werf, 2014: Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Climate Change, 4, 791795, https://doi.org/10.1038/nclimate2313.

    • Search Google Scholar
    • Export Citation
  • Aragão, L. E. O. C., and Coauthors, 2018: 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun., 9, 536, https://doi.org/10.1038/s41467-017-02771-y.

    • Search Google Scholar
    • Export Citation
  • Barbosa, M. L. F., R. C. Delgado, C. Forsad de Andrade, P. E. Teodoro, C. A. Silva Jr., H. S. Wanderley, and G. F. Capristo-Silva, 2021: Recent trends in the fire dynamics in Brazilian Legal Amazon: Interaction between the ENSO phenomenon, climate and land use. Environ. Dev., 39, 100648, https://doi.org/10.1016/j.envdev.2021.100648.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy, 2016: El Niño and a record CO2 rise. Nat. Climate Change, 6, 806810, https://doi.org/10.1038/nclimate3063.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 96559676, https://doi.org/10.1175/JCLI-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., C. Deser, A. S. Phillips, Y. Okumura, and S. M. Larson, 2020: ENSO and Pacific Decadal Variability in the Community Earth System Model Version 2. J. Adv. Model. Earth Syst., 12, e2019MS002022, https://doi.org/10.1029/2019MS002022.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., D. C. Morton, N. Andela, G. R. van der Werf, L. Giglio, and J. T. Randerson, 2017: A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Climate Change, 7, 906911, https://doi.org/10.1038/s41558-017-0014-8.

    • Search Google Scholar
    • Export Citation
  • Chrastansky, A., and L. D. Rotstayn, 2012: The effect of ENSO-induced rainfall and circulation changes on the direct and indirect radiative forcing from Indonesian biomass-burning aerosols. Atmos. Chem. Phys., 12, 11 39511 416, https://doi.org/10.5194/acp-12-11395-2012.

    • Search Google Scholar
    • Export Citation
  • Dagan, G., P. Stier, and D. Watson-Parris, 2019: Contrasting response of precipitation to aerosol perturbation in the tropics and extratropics explained by energy budget considerations. Geophys. Res. Lett., 46, 78287837, https://doi.org/10.1029/2019GL083479.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Dennis, R. A., and Coauthors, 2005: Fire, people and pixels: Linking social science and remote sensing to understand underlying causes and impacts of fires in Indonesia. Hum. Ecol., 33, 465504, https://doi.org/10.1007/s10745-005-5156-z.

    • Search Google Scholar
    • Export Citation
  • Duncan, B. N., I. Bey, M. Chin, L. J. Mickley, T. D. Fairlie, R. V. Martin, and H. Matsueda, 2003: Indonesian wildfires of 1997: Impact on tropospheric chemistry. J. Geophys. Res., 108, 4458, https://doi.org/10.1029/2002JD003195.

    • Search Google Scholar
    • Export Citation
  • Fang, K., and Coauthors, 2021: ENSO modulates wildfire activity in China. Nat. Commun., 12, 1764, https://doi.org/10.1038/s41467-021-21988-6.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., 2020: Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1). Geosci. Model Dev., 13, 36273642, https://doi.org/10.5194/gmd-13-3627-2020.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., B. L. Otto-Bliesner, and S. Stevenson, 2018: ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophys. Res. Lett., 45, 92169225, https://doi.org/10.1029/2018GL079022.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., A. S. Phillips, and C. Deser, 2020: Evaluation of leading modes of climate variability in the CMIP archives. J. Climate, 33, 55275545, https://doi.org/10.1175/JCLI-D-19-1024.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., N. Rosenbloom, R. R. Buchholz, G. Danabasoglu, D. M. Lawrence, and J.-F. Lamarque, 2021: Coupled climate responses to recent Australian wildfire and covid-19 emissions anomalies estimated in CESM2. Geophys. Res. Lett., 48, e2021GL093841, https://doi.org/10.1029/2021GL093841.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., J.-F. Lamarque, C. Hannay, N. Rosenbloom, S. Tilmes, P. DeRepentigny, A. Jahn, and C. Deser, 2022: Spurious late historical-era warming in CESM2 driven by prescribed biomass burning emissions. Geophys. Res. Lett., 49, e2021GL097420, https://doi.org/10.1029/2021GL097420.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., N. Rosenbloom, and R. Buchholz, 2023: A multiyear tropical Pacific cooling response to recent Australian wildfires in CESM2. Sci. Adv., 9, eadg1213, https://doi.org/10.1126/sciadv.adg1213.

    • Search Google Scholar
    • Export Citation
  • Field, R. D., G. R. van der Werf, and S. S. P. Shen, 2009: Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci., 2, 185188, https://doi.org/10.1038/ngeo443.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part 1: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Search Google Scholar
    • Export Citation
  • Gushchina, D., M. Kolennikova, B. Dewitte, and S.-W. Yeh, 2022: On the relationship between ENSO diversity and the ENSO atmospheric teleconnection to high-latitudes. Int. J. Climatol., 42, 13031325, https://doi.org/10.1002/joc.7304.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 17751790, https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjánsson, J.-P. Chen, and A. Hazra, 2010: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J. Atmos. Sci., 67, 24832503, https://doi.org/10.1175/2010JAS3425.1.

    • Search Google Scholar
    • Export Citation
  • Hu, C., S. Yang, Q. Wu, Z. Li, J. Chen, K. Deng, T. Zhang, and C. Zhang, 2016: Shifting El Niño inhibits summer arctic warming and Arctic sea-ice melting over the Canada Basin. Nat. Commun., 7, 11721, https://doi.org/10.1038/ncomms11721.

    • Search Google Scholar
    • Export Citation
  • Huijnen, V., and Coauthors, 2016: Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep., 6, 26886, https://doi.org/10.1038/srep26886.

    • Search Google Scholar
    • Export Citation
  • Inness, A., A. Benedetti, J. Flemming, V. Huijnen, J. W. Kaiser, M. Parrington, and S. Remy, 2015: The ENSO signal in atmospheric composition fields: Emission-driven versus dynamically induced changes. Atmos. Chem. Phys., 15, 90839097, https://doi.org/10.5194/acp-15-9083-2015.

    • Search Google Scholar
    • Export Citation
  • Jeong, H., H.-S. Park, M. F. Stuecker, and S.-W. Yeh, 2022: Record low arctic sea ice extent in 2012 linked to two-year La Niña-driven sea surface temperature pattern. Geophys. Res. Lett., 49, e2022GL098385, https://doi.org/10.1029/2022GL098385.

    • Search Google Scholar
    • Export Citation
  • Jiménez-Muñoz, J. C., C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. van der Schrier, 2016: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep., 6, 33130, https://doi.org/10.1038/srep33130.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, https://doi.org/10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Liu, X., P.-L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, https://doi.org/10.5194/gmd-9-505-2016.

    • Search Google Scholar
    • Export Citation
  • Marlier, M. E., R. S. DeFries, P. S. Kim, S. N. Koplitz, D. J. Jacob, L. J. Mickley, and S. S. Myers, 2015: Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environ. Res. Lett., 10, 085005, https://doi.org/10.1088/1748-9326/10/8/085005.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., A. Santoso, and W. Cai, 2020: El Niño Southern Oscillation in a Changing Climate. Vol. 253, Amer. Geophys. Union, 528 pp.

  • Monks, S. A., S. R. Arnold, and M. P. Chipperfield, 2012: Evidence for El Niño–Southern Oscillation (ENSO) influence on Arctic interannual variability through biomass burning emissions. Geophys. Res. Lett., 39, L14804, https://doi.org/10.1029/2012GL052512.

    • Search Google Scholar
    • Export Citation
  • Page, S. E., F. Siegert, J. O. Rieley, H.-D. V. Boehm, A. Jaya, and S. Limin, 2002: The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 6165, https://doi.org/10.1038/nature01131.

    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., Y. Chen, G. R. van der Werf, B. M. Rogers, and D. C. Morton, 2012: Global burned area and biomass burning emissions from small fires. J. Geophys. Res., 117, G04012, https://doi.org/10.1029/2012JG002128.

    • Search Google Scholar
    • Export Citation
  • Reid, J. S., and Coauthors, 2013: Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos. Res., 122, 403468, https://doi.org/10.1016/j.atmosres.2012.06.005.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., and Coauthors, 2021: Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn., 12, 13931411, https://doi.org/10.5194/esd-12-1393-2021.

    • Search Google Scholar
    • Export Citation
  • Sahu, L. K., and V. Sheel, 2014: Spatio-temporal variation of biomass burning sources over South and Southeast Asia. J. Atmos. Chem., 71 (1), 119, https://doi.org/10.1007/s10874-013-9275-4.

    • Search Google Scholar
    • Export Citation
  • Shi, X., X. Liu, and K. Zhang, 2015: Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5). Atmos. Chem. Phys., 15, 15031520, https://doi.org/10.5194/acp-15-1503-2015.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., K. A. McKinnon, D. Kennedy, D. M. Lawrence, F. Lehner, and R. Seager, 2024: Observed humidity trends in dry regions contradict climate models. Proc. Natl. Acad. Sci. USA, 121, e2302480120, https://doi.org/10.1073/pnas.2302480120.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., A. J. Soja, P. J. DeMott, and D. Winker, 2019: Progress and challenges in quantifying wildfire smoke emissions, their properties, transport, and atmospheric impacts. J. Geophys. Res. Atmos., 124, 13 00513 025, https://doi.org/10.1029/2018JD029878.

    • Search Google Scholar
    • Export Citation
  • Tosca, M. G., J. T. Randerson, C. S. Zender, M. G. Flanner, and P. J. Rasch, 2010: Do biomass burning aerosols intensify drought in equatorial Asia during El Niño? Atmos. Chem. Phys., 10, 35153528, https://doi.org/10.5194/acp-10-3515-2010.

    • Search Google Scholar
    • Export Citation
  • van der Werf, G. R., J. T. Randerson, G. J. Collatz, L. Giglio, P. S. Kasibhatla, A. F. Arellano Jr., S. C. Olsen, and E. S. Kasischke, 2004: Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science, 303, 7376, https://doi.org/10.1126/science.1090753.

    • Search Google Scholar
    • Export Citation
  • van der Werf, G. R., and Coauthors, 2008: Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl. Acad. Sci. USA, 105, 20 35020 355, https://doi.org/10.1073/pnas.0803375105.

    • Search Google Scholar
    • Export Citation
  • van der Werf, G. R., and Coauthors, 2017: Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data, 9, 697720, https://doi.org/10.5194/essd-9-697-2017.

    • Search Google Scholar
    • Export Citation
  • van Marle, M. J. E., and Coauthors, 2017: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev., 10, 33293357, https://doi.org/10.5194/gmd-10-3329-2017.

    • Search Google Scholar
    • Export Citation
  • Voulgarakis, A., M. E. Marlier, G. Faluvegi, D. T. Shindell, K. Tsigaridis, and S. Mangeon, 2015: Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions. J. Geophys. Res. Atmos., 120, 71577173, https://doi.org/10.1002/2014JD022926.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., X. Liu, C. Hoose, and B. Wang, 2014: Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5. Atmos. Chem. Phys., 14, 10 41110 430, https://doi.org/10.5194/acp-14-10411-2014.

    • Search Google Scholar
    • Export Citation
  • Ward, D. S., E. Shevliakova, S. Malyshev, J.-F. Lamarque, and A. T. Wittenberg, 2016: Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models. Environ. Res. Lett., 11, 125008, https://doi.org/10.1088/1748-9326/11/12/125008.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., and T. W. Swetnam, 2003: Interannual to decadal drought and wildfire in the western United States. Eos, Trans. Amer. Geophys. Union, 84, 545555, https://doi.org/10.1029/2003EO490001.

    • Search Google Scholar
    • Export Citation
  • Wiedinmyer, C., and Coauthors, 2023: The Fire Inventory from NCAR version 2.5: An updated global fire emissions model for climate and chemistry applications. Geosci. Model Dev., 16, 38733891, https://doi.org/10.5194/gmd-16-3873-2023.

    • Search Google Scholar
    • Export Citation
  • Williams, A. I. L., P. Stier, G. Dagan, and D. Watson-Parris, 2022: Strong control of effective radiative forcing by the spatial pattern of absorbing aerosol. Nat. Climate Change, 12, 735742, https://doi.org/10.1038/s41558-022-01415-4.

    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Wen, and Z. He, 2013: ENSO contribution to aerosol variations over the Maritime Continent and the western North Pacific during 2000–10. J. Climate, 26, 65416560, https://doi.org/10.1175/JCLI-D-12-00253.1.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and J.-Y. Yu, 2019: An Enso-induced aerosol dipole in the west-Central Pacific and its potential feedback to ENSO evolution. Climate Dyn., 52, 51155125, https://doi.org/10.1007/s00382-018-4435-5.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Coauthors, 2016: Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. J. Geophys. Res. Atmos., 121, 63216335, https://doi.org/10.1002/2015JD024503.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., and Coauthors, 2016: Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophys. Res. Lett., 43, 10 47210 479, https://doi.org/10.1002/2016GL070971.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., S. Huang, Q. Huang, H. Wang, G. Leng, and W. Fang, 2020: Time-lagged response of vegetation dynamics to climatic and teleconnection factors. Catena, 189, 104474, https://doi.org/10.1016/j.catena.2020.104474.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and D.-Z. Sun, 2022: ENSO asymmetry in CMIP6 models. J. Climate, 35, 55555572, https://doi.org/10.1175/JCLI-D-21-0835.1.

  • Zhu, J., and Coauthors, 2022: LGM paleoclimate constraints inform cloud parameterizations and equilibrium climate sensitivity in CESM2. J. Adv. Model. Earth Syst., 14, e2021MS002776, https://doi.org/10.1029/2021MS002776.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2178 2178 0
Full Text Views 1166 1166 288
PDF Downloads 245 245 24