Systematic Upstream Large-Scale Control of Subtropical Low-Cloud Properties

Hamish Lewis Department of Physics, The University of Auckland, Auckland, New Zealand
National Institute of Water and Atmospheric Research, Auckland, New Zealand

Search for other papers by Hamish Lewis in
Current site
Google Scholar
PubMed
Close
and
Gilles Bellon Centre National de Recherches Météorologiques, Université de Toulouse, Météo France, CNRS, Toulouse, France
Department of Physics, The University of Auckland, Auckland, New Zealand

Search for other papers by Gilles Bellon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It has recently been shown that the slow adjustment of the atmospheric boundary layer (ABL) to perturbations of the large-scale atmospheric conditions translates into an upstream control of the low-cloud cover (LCC) variability at climatological time scales in the subtropics. In this study, we expand upon this recent study to investigate upstream control of the climatology of low-cloud-radiative effect (CRE), as well as cloud properties relevant to their radiative effect: cloud liquid water path (LWP) and cloud optical depth (COD). We use machine learning statistical models with feature selection capabilities (random forests) to determine the influence of the local and upstream large-scale conditions in monthly data. These conditions are determined using backtrajectories in monthly mean wind fields. Total CRE, dominated by the shortwave contribution, exhibits a dependence on upstream estimated inversion strength (EIS), but not on upstream sea surface temperature (SST) as LCC does. Upstream control of COD was present but was not as consistent as LCC or CRE across different regions and cloud regimes, while LWP does not exhibit strong upstream control at all. This implies that the control of other boundary layer properties could explain the differences in response between LCC and CRE to SST and EIS. Looking at five subtropical eastern basins, it appears that key lead times are region specific. The inclusion of upstream control provides significant improvements to the predictive skill of statistical models over local linear regression, with improvements in variance explained well over 20% in many cases.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hamish Lewis, hamish.lewis@auckland.ac.nz

Abstract

It has recently been shown that the slow adjustment of the atmospheric boundary layer (ABL) to perturbations of the large-scale atmospheric conditions translates into an upstream control of the low-cloud cover (LCC) variability at climatological time scales in the subtropics. In this study, we expand upon this recent study to investigate upstream control of the climatology of low-cloud-radiative effect (CRE), as well as cloud properties relevant to their radiative effect: cloud liquid water path (LWP) and cloud optical depth (COD). We use machine learning statistical models with feature selection capabilities (random forests) to determine the influence of the local and upstream large-scale conditions in monthly data. These conditions are determined using backtrajectories in monthly mean wind fields. Total CRE, dominated by the shortwave contribution, exhibits a dependence on upstream estimated inversion strength (EIS), but not on upstream sea surface temperature (SST) as LCC does. Upstream control of COD was present but was not as consistent as LCC or CRE across different regions and cloud regimes, while LWP does not exhibit strong upstream control at all. This implies that the control of other boundary layer properties could explain the differences in response between LCC and CRE to SST and EIS. Looking at five subtropical eastern basins, it appears that key lead times are region specific. The inclusion of upstream control provides significant improvements to the predictive skill of statistical models over local linear regression, with improvements in variance explained well over 20% in many cases.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hamish Lewis, hamish.lewis@auckland.ac.nz

Supplementary Materials

    • Supplemental Materials (PDF 0.6025 MB)
Save
  • Bellon, G., and B. Stevens, 2013: Time scales of the trade wind boundary layer adjustment. J. Atmos. Sci., 70, 10711083, https://doi.org/10.1175/JAS-D-12-0219.1.

    • Search Google Scholar
    • Export Citation
  • Bellon, G., and O. Geoffroy, 2016a: How finely do we need to represent the stratocumulus radiative effect? Quart. J. Roy. Meteor. Soc., 142, 23472358, https://doi.org/10.1002/qj.2828.

    • Search Google Scholar
    • Export Citation
  • Bellon, G., and O. Geoffroy, 2016b: Stratocumulus radiative effect, multiple equilibria of the well-mixed boundary layer and transition to shallow convection. Quart. J. Roy. Meteor. Soc., 142, 16851696, https://doi.org/10.1002/qj.2762.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234258, https://doi.org/10.1002/jame.20025.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. Uchida, and P. N. Blossey, 2010a: Slow manifolds and multiple equilibria in stratocumulus-capped boundary layers. J. Adv. Model. Earth Syst., 2, (4), https://doi.org/10.3894/JAMES.2010.2.14.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., R. Wood, R. C. George, D. Leon, G. Allen, and X. Zheng, 2010b: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20°S during VOCALS-REx. Atmos. Chem. Phys., 10, 10 63910 654, https://doi.org/10.5194/acp-10-10639-2010.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316337, https://doi.org/10.1002/jame.20019.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91114, https://doi.org/10.1002/2013MS000250.

    • Search Google Scholar
    • Export Citation
  • Brueck, M., L. Nuijens, and B. Stevens, 2015: On the seasonal and synoptic time-scale variability of the North Atlantic trade wind region and its low-level clouds. J. Atmos. Sci., 72, 14281446, https://doi.org/10.1175/JAS-D-14-0054.1.

    • Search Google Scholar
    • Export Citation
  • Cesana, G., and D. E. Waliser, 2016: Characterizing and understanding systematic biases in the vertical structure of clouds in CMIP5/CFMIP2 models. Geophys. Res. Lett., 43, 10 53810 546, https://doi.org/10.1002/2016GL070515.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., S. Bony, D. Winker, M. Chiriaco, J.-L. Dufresne, and G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704, https://doi.org/10.1029/2008GL034207.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., S. Bony, D. Winker, G. Cesana, J. L. Dufresne, P. Minnis, C. J. Stubenrauch, and S. Zeng, 2010: The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, https://doi.org/10.1029/2009JD012251.

    • Search Google Scholar
    • Export Citation
  • Cho, H.-M., and Coauthors, 2015: Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. J. Geophys. Res. Atmos., 120, 41324154, https://doi.org/10.1002/2015JD023161.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., and R. Wood, 2016: Factors controlling low-cloud evolution over the eastern subtropical oceans: A Lagrangian perspective using the A-train satellites. J. Atmos. Sci., 73, 331351, https://doi.org/10.1175/JAS-D-15-0193.1.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., and R. Wood, 2018: The competing effects of stability and humidity on subtropical stratocumulus entrainment and cloud evolution from a Lagrangian perspective. J. Atmos. Sci., 75, 25632578, https://doi.org/10.1175/JAS-D-18-0030.1.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., I. L. McCoy, and R. Wood, 2021a: Environmental and internal controls on Lagrangian transitions from closed cell mesoscale cellular convection over subtropical oceans. J. Atmos. Sci., 78, 23672383, https://doi.org/10.1175/JAS-D-20-0277.1.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., C. R. Terai, D. P. Grosvenor, and R. Wood, 2021b: Evaluating the Lagrangian evolution of subtropical low clouds in GCMS using observations: Mean evolution, time scales, and responses to predictors. J. Atmos. Sci., 78, 353372, https://doi.org/10.1175/JAS-D-20-0178.1.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., I. L. McCoy, and R. Wood, 2022: Wind, rain, and the closed to open cell transition in subtropical marine stratocumulus. J. Geophys. Res. Atmos., 127, e2022JD036795, https://doi.org/10.1029/2022JD036795.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, 2013: Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens., 51, 38263852, https://doi.org/10.1109/TGRS.2012.2227333.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., Y. Zhang, M. D. Zelinka, R. Pincus, J. Boyle, and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res. Atmos., 118, 13291342, https://doi.org/10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., A. Hall, J. R. Norris, and R. Pincus, 2017: Low-cloud feedbacks from cloud-controlling factors: A review. Surv. Geophys., 38, 13071329, https://doi.org/10.1007/s10712-017-9433-3.

    • Search Google Scholar
    • Export Citation
  • Konsta, D., and Coauthors, 2022: Low-level marine tropical clouds in six CMIP6 models are too few, too bright but also too compact and too homogeneous. Geophys. Res. Lett., 49, e2021GL097593, https://doi.org/10.1029/2021GL097593.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M., and H. Su, 2014: Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals. J. Geophys. Res. Atmos., 119, 89628979, https://doi.org/10.1002/2014JD021568.

    • Search Google Scholar
    • Export Citation
  • Lewis, H., G. Bellon, and T. Dinh, 2023: Upstream large-scale control of subtropical low-cloud climatology. J. Climate, 36, 32893303, https://doi.org/10.1175/JCLI-D-22-0676.1.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, https://doi.org/10.1002/qj.49709440106.

    • Search Google Scholar
    • Export Citation
  • Lundberg, S. M., and S.-I. Lee, 2017: A unified approach to interpreting model predictions. NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., 4768–4777, https://dl.acm.org/doi/10.5555/3295222.3295230.

  • Mauger, G. S., and J. R. Norris, 2010: Assessing the impact of meteorological history on subtropical cloud fraction. J. Climate, 23, 29262940, https://doi.org/10.1175/2010JCLI3272.1.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, https://doi.org/10.1175/JCLI-D-12-00736.1.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2016: Reducing the uncertainty in subtropical cloud feedback. Geophys. Res. Lett., 43, 21442148, https://doi.org/10.1002/2015GL067416.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., R. C. Scott, M. D. Zelinka, S. A. Klein, J. R. Norris, and P. M. Caldwell, 2021: Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Climate Change, 11, 501507, https://doi.org/10.1038/s41558-021-01039-0.

    • Search Google Scholar
    • Export Citation
  • Nam, C., S. Bony, J.-L. Dufresne, and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, https://doi.org/10.1029/2012GL053421.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783820, https://doi.org/10.1002/qj.49711046603.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., and B. Stevens, 2012: The influence of wind speed on shallow marine cumulus convection. J. Atmos. Sci., 69, 168184, https://doi.org/10.1175/JAS-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Pincus, R., M. Szczodrak, J. Gu, and P. Austin, 1995: Uncertainty in cloud optical depth estimates made from satellite radiance measurements. J. Climate, 8, 14531462, https://doi.org/10.1175/1520-0442(1995)008<1453:UICODE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., M. B. Baker, and C. S. Bretherton, 1997: What controls stratocumulus radiative properties? Lagrangian observations of cloud evolution. J. Atmos. Sci., 54, 22152236, https://doi.org/10.1175/1520-0469(1997)054<2215:WCSRPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, https://doi.org/10.1175/JCLI-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, https://doi.org/10.1175/1520-0477(1991)072%3C0002:ICDP%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., and B. Stevens, 2011: On the factors modulating the stratocumulus to cumulus transitions. J. Atmos. Sci., 68, 18651881, https://doi.org/10.1175/2011JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979: Marine stratocumulus convection. Part II: Horizontally inhomogeneous solutions. J. Atmos. Sci., 36, 13081324, https://doi.org/10.1175/1520-0469(1979)036<1308:MSCPIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scott, R. C., T. A. Myers, J. R. Norris, M. D. Zelinka, S. A. Klein, M. Sun, and D. R. Doelling, 2020: Observed sensitivity of low-cloud radiative effects to meteorological perturbations over the global oceans. J. Climate, 33, 77177734, https://doi.org/10.1175/JCLI-D-19-1028.1.

    • Search Google Scholar
    • Export Citation
  • Seethala, C., and A. Horváth, 2010: Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds. J. Geophys. Res., 115, D13202, https://doi.org/10.1029/2009JD012662.

    • Search Google Scholar
    • Export Citation
  • Sun, M., D. R. Doelling, N. G. Loeb, R. C. Scott, J. Wilkins, L. T. Nguyen, and P. Mlynczak, 2022: Clouds and the Earth’s Radiant Energy System (CERES) FluxByCldTyp edition 4 data product. J. Atmos. Oceanic Technol., 39, 303318, https://doi.org/10.1175/JTECH-D-21-0029.1.

    • Search Google Scholar
    • Export Citation
  • van der Dussen, J. J., S. R. de Roode, S. D. Gesso, and A. P. Siebesma, 2015: An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation. J. Adv. Model. Earth Syst., 7, 670691, https://doi.org/10.1002/2014MS000380.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2002: Observations of three-dimensional radiative effects that influence MODIS cloud optical thickness retrievals. J. Atmos. Sci., 59, 16071618, https://doi.org/10.1175/1520-0469(2002)059<1607:OOTDRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, https://doi.org/10.1007/s00382-013-1725-9.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077%3C0853:CATERE%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Stevens, B. Medeiros, and M. Ghil, 2009: Low-cloud fraction, lower-tropospheric stability, and large-scale divergence. J. Climate, 22, 48274844, https://doi.org/10.1175/2009JCLI2891.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4949 4949 0
Full Text Views 1502 1502 350
PDF Downloads 209 209 21