How Do Model Biases Affect Large-Scale Teleconnections That Control Southwest U.S. Precipitation? Part II: Seasonal Models

Y. Peings Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Y. Peings in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6852-7333
,
C. Dong Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by C. Dong in
Current site
Google Scholar
PubMed
Close
, and
G. Magnusdottir Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by G. Magnusdottir in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We explore the skill in predicting southwest United States (SWUS) October–March precipitation and associated large-scale teleconnections in an ensemble of hindcasts from seasonal prediction systems. We identify key model biases that degrade the models’ capability to predict SWUS precipitation. The subtropical jet in the Pacific sector is generally too zonal and elongated. This is reflected in the models’ North Pacific ENSO teleconnections that are generally too weak with exaggerated northwest–southeast tilt, compared to observations. Also, the models are too dependent on tropical, El Niño–like, wave train anomalies for producing high seasonal SWUS precipitation, when in observations there is a larger influence of zonal Rossby wave trains such as the one observed in 2016/17. Overall, this is consistent with biases in the basic-flow-inducing errors in the propagation of zonal wave trains in the North Pacific, which affects SWUS precipitation downstream. Although higher skill may be gained from reducing mean flow biases in the models, a case study of the 2016/17 winter illustrates the great challenge behind skillful seasonal prediction of SWUS precipitation. Unsurprisingly, the almost record-breaking precipitation observed that year in the absence of ENSO is not predicted in the hindcasts, and model perturbation experiments suggest that even a perfect prediction of tropical sea surface temperature and tropical atmospheric variability would not have sufficed to produce a reasonable seasonal precipitation prediction. On a more positive note, our perturbation experiments suggest a potential role for Arctic variability that supports findings from prior studies and suggests reexamining high-latitude drivers of SWUS precipitation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yannick Peings, ypeings@uci.edu

Abstract

We explore the skill in predicting southwest United States (SWUS) October–March precipitation and associated large-scale teleconnections in an ensemble of hindcasts from seasonal prediction systems. We identify key model biases that degrade the models’ capability to predict SWUS precipitation. The subtropical jet in the Pacific sector is generally too zonal and elongated. This is reflected in the models’ North Pacific ENSO teleconnections that are generally too weak with exaggerated northwest–southeast tilt, compared to observations. Also, the models are too dependent on tropical, El Niño–like, wave train anomalies for producing high seasonal SWUS precipitation, when in observations there is a larger influence of zonal Rossby wave trains such as the one observed in 2016/17. Overall, this is consistent with biases in the basic-flow-inducing errors in the propagation of zonal wave trains in the North Pacific, which affects SWUS precipitation downstream. Although higher skill may be gained from reducing mean flow biases in the models, a case study of the 2016/17 winter illustrates the great challenge behind skillful seasonal prediction of SWUS precipitation. Unsurprisingly, the almost record-breaking precipitation observed that year in the absence of ENSO is not predicted in the hindcasts, and model perturbation experiments suggest that even a perfect prediction of tropical sea surface temperature and tropical atmospheric variability would not have sufficed to produce a reasonable seasonal precipitation prediction. On a more positive note, our perturbation experiments suggest a potential role for Arctic variability that supports findings from prior studies and suggests reexamining high-latitude drivers of SWUS precipitation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yannick Peings, ypeings@uci.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.0255 MB)
Save
  • Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., A. Leetmaa, V. E. Kousky, R. E. Livezey, E. A. O’Lenic, H. Van den Dool, A. J. Wagner, and D. A. Unger, 1999: NCEP forecasts of the El Niño of 1997–98 and its U.S. impacts. Bull. Amer. Meteor. Soc., 80, 18291852, https://doi.org/10.1175/1520-0477(1999)080<1829:NFOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Batté, L., L. Dorel, C. Ardilouze, and J.-F. Guérémy, 2021: Documentation of the METEO-FRANCE seasonal forecasting system 8. Tech. Rep., 36 pp., http://www.umr-cnrm.fr/IMG/pdf/system8-technical.pdf.

  • Bayr, T., D. I. V. Domeisen, and C. Wengel, 2019: The effect of the equatorial Pacific cold SST bias on simulated ENSO teleconnections to the North Pacific and California. Climate Dyn., 53, 37713789, https://doi.org/10.1007/s00382-019-04746-9.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., B. P. Kirtman, M. L’Heureux, Á. G. Muñoz, and K. Pegion, 2022: A decade of the North American Multimodel Ensemble (NMME): Research, application, and future directions. Bull. Amer. Meteor. Soc., 103, E973E995, https://doi.org/10.1175/BAMS-D-20-0327.1.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Beverley, J. D., M. Newman, and A. Hoell, 2023: Rapid development of systematic ENSO-related seasonal forecast errors. Geophys. Res. Lett., 50, e2022GL102249, https://doi.org/10.1029/2022GL102249.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 15131532, https://doi.org/10.1175/JAS-D-16-0305.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., and A. Kumar, 2018: Winter 2015/16 atmospheric and precipitation anomalies over North America: El Niño response and the role of noise. Mon. Wea. Rev., 146, 909927, https://doi.org/10.1175/MWR-D-17-0116.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. Wayne Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., and Coauthors, 2024: From California’s extreme drought to major flooding: Evaluating and synthesizing experimental seasonal and subseasonal forecasts of landfalling atmospheric rivers and extreme precipitation during Winter 2022/23. Bull. Amer. Meteor. Soc., 105, E84E104, https://doi.org/10.1175/BAMS-D-22-0208.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, A. S. Phillips, and K. A. McKinnon, 2018: How well do we know ENSO’s climate impacts over North America, and how do we evaluate models accordingly? J. Climate, 31, 49915014, https://doi.org/10.1175/JCLI-D-17-0783.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Dias, J., S. N. Tulich, M. Gehne, and G. N. Kiladis, 2021: Tropical origins of weeks 2–4 forecast errors during the Northern Hemisphere cool season. Mon. Wea. Rev., 149, 29752991, https://doi.org/10.1175/MWR-D-21-0020.1.

    • Search Google Scholar
    • Export Citation
  • Ding, H., M. Newman, M. A. Alexander, and A. T. Wittenberg, 2018: Skillful climate forecasts of the tropical Indo-Pacific Ocean using model-analogs. J. Climate, 31, 54375459, https://doi.org/10.1175/JCLI-D-17-0661.1.

    • Search Google Scholar
    • Export Citation
  • Ding, H., M. Newman, M. A. Alexander, and A. T. Wittenberg, 2019: Diagnosing secular variations in retrospective ENSO seasonal forecast skill using CMIP5 model-analogs. Geophys. Res. Lett., 46, 17211730, https://doi.org/10.1029/2018GL080598.

    • Search Google Scholar
    • Export Citation
  • Ding, H., M. Newman, M. A. Alexander, A. T. Wittenberg, 2020: Relating CMIP5 model biases to seasonal forecast skill in the tropical Pacific. Geophys. Res. Lett., 47, e2019GL086765, https://doi.org/10.1029/2019GL086765.

    • Search Google Scholar
    • Export Citation
  • Dong, C., Y. Peings, and G. Magnusdottir, 2023: Regulation of southwestern United States precipitation by non-ENSO teleconnections and the impact of the background flow. J. Climate, 36, 74157433, https://doi.org/10.1175/JCLI-D-23-0081.1.

    • Search Google Scholar
    • Export Citation
  • Dong, C., Y. Peings, and G. Magnusdottir, 2024: How do forecast model biases affect large-scale teleconnections that control Southwest U.S. precipitation? Part I: S2S models. J. Climate, 37, 54095426, https://doi.org/10.1175/JCLI-D-24-0051.1.

    • Search Google Scholar
    • Export Citation
  • Ebert-Uphoff, I., and K. Hilburn, 2023: The outlook for AI weather prediction. Nature, 619, 473474, https://doi.org/10.1038/d41586-023-02084-9.

    • Search Google Scholar
    • Export Citation
  • Fröhlich, K., and Coauthors, 2021: The German Climate Forecast System: GCFS. J. Adv. Model. Earth Syst., 13, e2020MS002101, https://doi.org/10.1029/2020MS002101.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., W. Chen, Y. Li, C. Schwartz, P. Yadav, and D. Domeisen, 2022: The winter North Pacific teleconnection in response to ENSO and the MJO in operational subseasonal forecasting models is too weak. J. Climate, 35, 80138030, https://doi.org/10.1175/JCLI-D-22-0179.1.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., D. E. Waliser, B. Guan, M. J. DeFlorio, F. M. Ralph, and D. L. Swain, 2020: Ridging associated with drought across the western and southwestern United States: Characteristics, trends, and predictability sources. J. Climate, 33, 24852508, https://doi.org/10.1175/JCLI-D-19-0439.1.

    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., W. E. Chapman, A. Altinok, L. Delle Monache, M. J. DeFlorio, and D. E. Waliser, 2021: Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts. Commun. Earth Environ., 2, 159, https://doi.org/10.1038/s43247-021-00225-4.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., and Coauthors, 2020: The new CMCC operational seasonal prediction system. 34 pp., https://doi.org/10.25424/CMCC/SPS3.5.

  • Guirguis, K., A. Gershunov, T. Shulgina, R. E. S. Clemesha, and F. M. Ralph, 2019: Atmospheric rivers impacting Northern California and their modulation by a variable climate. Climate Dyn., 52, 65696583, https://doi.org/10.1007/s00382-018-4532-5.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., D. E. Waliser, P. B. Gibson, G. Chen, and W. Guan, 2022: Why seasonal prediction of California winter precipitation is challenging. Bull. Amer. Meteor. Soc., 103, E2688E2700, https://doi.org/10.1175/BAMS-D-21-0252.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and Coauthors, 2019: SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev., 12, 10871117, https://doi.org/10.5194/gmd-12-1087-2019.

    • Search Google Scholar
    • Export Citation
  • Karanja, J., B. M. Svoma, J. Walter, and M. Georgescu, 2023: Southwest US winter precipitation variability: Reviewing the role of oceanic teleconnections. Environ. Res. Lett., 18, 053003, https://doi.org/10.1088/1748-9326/accd84.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. Chen, 2017: What is the variability in US West Coast winter precipitation during strong El Niño events? Climate Dyn., 49, 27892802, https://doi.org/10.1007/s00382-016-3485-9.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. Chen, 2020: Understanding skill of seasonal mean precipitation prediction over California during boreal winter and role of predictability limits. J. Climate, 33, 61416163, https://doi.org/10.1175/JCLI-D-19-0275.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., H. Lopez, E.-S. Chung, P. DiNezio, S.-W. Yeh, and A. T. Wittenberg, 2018: On the fragile relationship between El Niño and California rainfall. Geophys. Res. Lett., 45, 907915, https://doi.org/10.1002/2017GL076197.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., M. K. Tippett, and A. G. Barnston, 2015: Characterizing ENSO coupled variability and its impact on North American seasonal precipitation and temperature. J. Climate, 28, 42314245, https://doi.org/10.1175/JCLI-D-14-00508.1.

    • Search Google Scholar
    • Export Citation
  • Li, R. K., T. Woollings, C. O’Reilly, and A. A. Scaife, 2020: Effect of the North Pacific tropospheric waveguide on the fidelity of model El Niño teleconnections. J. Climate, 33, 52235237, https://doi.org/10.1175/JCLI-D-19-0156.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and Coauthors, 2020: The Canadian Seasonal to Interannual Prediction System version 2 (CanSIPSv2). Wea. Forecasting, 35, 13171343, https://doi.org/10.1175/WAF-D-19-0259.1.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2021: On the correspondence between seasonal forecast biases and long-term climate biases in sea surface temperature. J. Climate, 34, 427446, https://doi.org/10.1175/JCLI-D-20-0338.1.

    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Search Google Scholar
    • Export Citation
  • Mamalakis, A., J.-Y. Yu, J. T. Randerson, A. AghaKouchak, and E. Foufoula-Georgiou, 2018: A new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US. Nat. Commun., 9, 2332, https://doi.org/10.1038/s41467-018-04722-7.

    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213, https://doi.org/10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and K. M. Nardi, 2016: Modulation of atmospheric rivers near Alaska and the U.S. West Coast by northeast Pacific height anomalies. J. Geophys. Res. Atmos., 121, 12  75112 765, https://doi.org/10.1002/2016JD025350.

    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2016: Persistent landfalling atmospheric rivers over the west coast of North America. J. Geophys. Res. Atmos., 121, 13  28713 300, https://doi.org/10.1002/2016JD025549.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., Y. Lim, and G. Magnusdottir, 2022: Potential predictability of Southwest U.S. rainfall: Role of tropical and high-latitude variability. J. Climate, 35, 16971717, https://doi.org/10.1175/JCLI-D-21-0775.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2011: Storms, floods, and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265266, https://doi.org/10.1029/2011EO320001.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roy, T., X. He, P. Lin, H. E. Beck, C. Castro, and E. F. Wood, 2020: Global evaluation of seasonal precipitation and temperature forecasts from NMME. J. Hydrometeor., 21, 24732486, https://doi.org/10.1175/JHM-D-19-0095.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2016: On the role of tropical ocean forcing of the persistent North American west coast ridge of winter 2013/14. J. Climate, 29, 80278049, https://doi.org/10.1175/JCLI-D-16-0145.1.

    • Search Google Scholar
    • Export Citation
  • Sengupta, A., B. Singh, M. J. DeFlorio, C. Raymond, A. W. Robertson, X. Zeng, D. E. Waliser, and J. Jones, 2022: Advances in subseasonal to seasonal prediction relevant to water management in the western United States. Bull. Amer. Meteor. Soc., 103, E2168E2175, https://doi.org/10.1175/BAMS-D-22-0146.1.

    • Search Google Scholar
    • Export Citation
  • Singh, D., M. Ting, A. A. Scaife, and N. Martin, 2018: California winter precipitation predictability: Insights from the anomalous 2015–2016 and 2016–2017 seasons. Geophys. Res. Lett., 45, 99729980, https://doi.org/10.1029/2018GL078844.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., R. R. Neely, D. R. Marsh, and L. M. Polvani, 2014: The Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM), J. Adv. Model. Earth Syst., 6, 883901, https://doi.org/10.1002/2014MS000346.

    • Search Google Scholar
    • Export Citation
  • Sun, L., M. P. Hoerling, J. H. Richter, A. Hoell, A. Kumar, and J. W. Hurrell, 2022: Attribution of North American subseasonal precipitation prediction skill. Wea. Forecasting, 37, 20692085, https://doi.org/10.1175/WAF-D-22-0076.1.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., 2015: A tale of two California droughts: Lessons amidst record warmth and dryness in a region of complex physical and human geography. Geophys. Res. Lett., 42, 999910 003, https://doi.org/10.1002/2015GL066628.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., D. Singh, D. E. Horton, J. S. Mankin, T. C. Ballard, and N. S. Diffenbaugh, 2017: Remote linkages to anomalous winter atmospheric ridging over the northeastern Pacific. J. Geophys. Res. Atmos., 122, 12  19412 209, https://doi.org/10.1002/2017JD026575.

    • Search Google Scholar
    • Export Citation
  • Switanek, M. B., and T. M. Hamill, 2022: A new methodology to produce more skillful United States cool-season precipitation forecasts. J. Hydrometeor., 23, 9911005, https://doi.org/10.1175/JHM-D-21-0235.1.

    • Search Google Scholar
    • Export Citation
  • Switanek, M. B., J. J. Barsugli, M. Scheuerer, and T. M. Hamill, 2020: Present and past sea surface temperatures: A recipe for better seasonal climate forecasts. Wea. Forecasting, 35, 12211234, https://doi.org/10.1175/WAF-D-19-0241.1.

    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2017: Causes of extreme ridges that induce California droughts. J. Climate, 30, 14771492, https://doi.org/10.1175/JCLI-D-16-0524.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020: MJO teleconnections over the PNA region in climate models. Part II: Impacts of the MJO and basic state. J. Climate, 33, 50815101, https://doi.org/10.1175/JCLI-D-19-0865.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y. S., J.-H. Yoon, E. Becker, and R. Gillies, 2017: California from drought to deluge. Nat. Climate Change, 7, 465468, https://doi.org/10.1038/nclimate3330.

    • Search Google Scholar
    • Export Citation
  • Williams, N. C., A. A. Scaife, and J. A. Screen, 2023: Underpredicted ENSO teleconnections in seasonal forecasts. Geophys. Res. Lett., 50, e2022GL101689, https://doi.org/10.1029/2022GL101689.

    • Search Google Scholar
    • Export Citation
  • Yonehara, H., and Coauthors, 2020: Upgrade of JMA’s operational global model. CAS/JSC WGNE Res. Act. Earth Syst. Modell., 50, 6.196.20.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., and G. Villarini, 2018: Uncovering the role of the East Asian jet stream and heterogeneities in atmospheric rivers affecting the western United States. Proc. Natl. Acad. Sci. USA, 115, 891896, https://doi.org/10.1073/pnas.1717883115.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 12331 12331 0
Full Text Views 3517 3517 779
PDF Downloads 268 268 19