Temperature Increases Threaten the Congo Basin Rainforest in the Twenty-First Century More than Precipitation Changes

Kerry H. Cook Department of Earth and Planetary Sciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Kerry H. Cook in
Current site
Google Scholar
PubMed
Close
,
Edward K. Vizy Department of Earth and Planetary Sciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Edward K. Vizy in
Current site
Google Scholar
PubMed
Close
,
Patrick C. Andrews Department of Earth and Planetary Sciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Patrick C. Andrews in
Current site
Google Scholar
PubMed
Close
, and
Siyu Zhao University of Houston, Houston, Texas

Search for other papers by Siyu Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Western and central equatorial Africa—the Congo basin region—is one of the most convectively active regions on the planet. It supports a large, diverse tropical forest and sequesters carbon. Despite its importance, the region is understudied and poorly observed. Seasonality in the Congo basin region is defined by variations in precipitation, not temperature. The equinoctial seasons produce the highest rainfall rates. Summers are also wet, while winters are dry. A number of studies have analyzed precipitation trends in observations, but a clear signal has not emerged. GCMs do not represent the regional climate with high accuracy, and their projections disagree. Analyses of the forest health, however, document a decline. Here, convective-permitting model simulations with a 3-km resolution are used to predict greenhouse gas–forced changes in the climate of the Congo basin. Implications of the simulated changes for the health of the Congolese rainforest are evaluated. Simulated surface temperatures in the Congo basin region increase by 4.0–5.4 K by the end of the century, depending on region and season. Increases in atmospheric water vapor and changes in clouds provide important feedbacks to the radiative forcing. No statistically significant changes in regional-scale precipitation occur, but convective storms intensify locally. Since estimates based on optimal temperatures for photosynthesis suggest 4-K warming causes a decline in tropical forests, these results suggest that temperature increases pose a greater threat to the health of the Congolese rainforest than precipitation changes in the twenty-first century.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kerry H. Cook, kc@jsg.utexas.edu

Abstract

Western and central equatorial Africa—the Congo basin region—is one of the most convectively active regions on the planet. It supports a large, diverse tropical forest and sequesters carbon. Despite its importance, the region is understudied and poorly observed. Seasonality in the Congo basin region is defined by variations in precipitation, not temperature. The equinoctial seasons produce the highest rainfall rates. Summers are also wet, while winters are dry. A number of studies have analyzed precipitation trends in observations, but a clear signal has not emerged. GCMs do not represent the regional climate with high accuracy, and their projections disagree. Analyses of the forest health, however, document a decline. Here, convective-permitting model simulations with a 3-km resolution are used to predict greenhouse gas–forced changes in the climate of the Congo basin. Implications of the simulated changes for the health of the Congolese rainforest are evaluated. Simulated surface temperatures in the Congo basin region increase by 4.0–5.4 K by the end of the century, depending on region and season. Increases in atmospheric water vapor and changes in clouds provide important feedbacks to the radiative forcing. No statistically significant changes in regional-scale precipitation occur, but convective storms intensify locally. Since estimates based on optimal temperatures for photosynthesis suggest 4-K warming causes a decline in tropical forests, these results suggest that temperature increases pose a greater threat to the health of the Congolese rainforest than precipitation changes in the twenty-first century.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kerry H. Cook, kc@jsg.utexas.edu
Save
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Schubert, and A. S. Frisch, 1995: The Atlantic stratocumulus transition experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aloysius, N. R., J. Sheffield, J. E. Saiers, H. Li, and E. F. Wood, 2016: Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. J. Geophys. Res. Atmos., 121, 130152, https://doi.org/10.1002/2015JD023656.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2015: TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. J. Climate, 28, 65366547, https://doi.org/10.1175/JCLI-D-15-0124.1.

    • Search Google Scholar
    • Export Citation
  • Champagne, O., and Coauthors, 2023: Climatology of low-level clouds over western equatorial Africa based on ground observations and satellites. J. Climate, 36, 42894306, https://doi.org/10.1175/JCLI-D-22-0364.1.

    • Search Google Scholar
    • Export Citation
  • Cheung, P. K., C. Y. Jim, and P. L. Hung, 2021: Preliminary study on the temperature relationship at remotely-sensed tree canopy and below-canopy air and ground surface. Build. Environ., 204, 108169, https://doi.org/10.1016/j.buildenv.2021.108169.

    • Search Google Scholar
    • Export Citation
  • Christensen, J., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Clark, D. A., S. C. Piper, C. D. Keeling, and D. B. Clark, 2003: Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc. Natl. Acad. Sci. USA, 100, 58525857, https://doi.org/10.1073/pnas.0935903100.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 2003: Role of continents in driving the Hadley cells. J. Atmos. Sci., 60, 957976, https://doi.org/10.1175/1520-0469(2003)060<0957:ROCIDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2022: Hydrodynamics of regional and seasonal variations in Congo Basin precipitation. Climate Dyn., 59, 17751797, https://doi.org/10.1007/s00382-021-06066-3.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., R. G. J. Fitzpatrick, W. Liu, and E. K. Vizy, 2020a: Seasonal asymmetry of equatorial East African rainfall projections: Understanding differences between the response of the long rains and the short rains to increased greenhouse gases. Climate Dyn., 55, 17591777, https://doi.org/10.1007/s00382-020-05350-y.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., Y. Liu, and E. K. Vizy, 2020b: Congo Basin drying associated with poleward shifts of the African thermal lows. Climate Dyn., 54, 863883, https://doi.org/10.1007/s00382-019-05033-3.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., E. K. Vizy, Y. Liu, and W. Liu, 2021: Greenhouse-gas induced warming amplification over the Arabian Peninsula with implications for Ethiopian rainfall. Climate Dyn., 57, 31133133, https://doi.org/10.1007/s00382-021-05858-x.

    • Search Google Scholar
    • Export Citation
  • Creese, A., and R. Washington, 2016: Using qflux to constrain modeled Congo Basin rainfall in the CMIP5 ensemble. J. Geophys. Res. Atmos., 121, 13 41513 442, https://doi.org/10.1002/2016JD025596.

    • Search Google Scholar
    • Export Citation
  • Creese, A., and R. Washington, 2018: A process-based assessment of CMIP5 rainfall in the Congo Basin: The September–November rainy season. J. Climate, 31, 74177439, https://doi.org/10.1175/JCLI-D-17-0818.1.

    • Search Google Scholar
    • Export Citation
  • Dargie, G. C., and Coauthors, 2019: Congo Basin peatlands: Threats and conservation priorities. Mitigation Adapt. Strategies Global Change, 24, 669686, https://doi.org/10.1007/s11027-017-9774-8.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., C. Funk, P. Peterson, R. Maidment, T. Tadesse, H. Gadain, and P. Ceccato, 2018: Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quart. J. Roy. Meteor. Soc., 144, 292312, https://doi.org/10.1002/qj.3244.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Robert-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Doughty, C. E., and Coauthors, 2023: Tropical forests are approaching critical temperature thresholds. Nature, 621, 105111, https://doi.org/10.1038/s41586-023-06391-z.

    • Search Google Scholar
    • Export Citation
  • Etminan, M., G. Myhre, E. J. Highwood, and K. P. Shine, 2016: Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett., 43, 12 61412 623, https://doi.org/10.1002/2016GL071930.

    • Search Google Scholar
    • Export Citation
  • Feeley, K. J., S. J. Wright, M. N. Nur Supardi, A. R. Kassim, and S. J. Davies, 2007: Decelerating growth in tropical forest trees. Ecol. Lett., 10, 461469, https://doi.org/10.1111/j.1461-0248.2007.01033.x.

    • Search Google Scholar
    • Export Citation
  • Feeley, K. J., and Coauthors, 2011: Upslope migration of Andean trees. J. Biogeogr., 38, 783791, https://doi.org/10.1111/j.1365-2699.2010.02444.x.

    • Search Google Scholar
    • Export Citation
  • Feeley, K. J., M. Bernal-Escobar, R. Fortier, and A. T. Kullberg, 2023: Tropical trees will need to acclimate to rising temperatures—But can they? Plants, 12, 3142, https://doi.org/10.3390/plants12173142.

    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Search Google Scholar
    • Export Citation
  • Good, S., and Coauthors, 2020: The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens., 12, 720, https://doi.org/10.3390/rs12040720.

    • Search Google Scholar
    • Export Citation
  • Han, F., K. H. Cook, and E. K. Vizy, 2019: Changes in intense rainfall events and dry periods across Africa in the twenty-first century. Climate Dyn., 53, 27572777, https://doi.org/10.1007/s00382-019-04653-z.

    • Search Google Scholar
    • Export Citation
  • Harrison, I. J., R. Brummett, and M. L. J. Stiassny, 2016: Congo River Basin. The Wetland Book, Central African Regional Program for the Environment (USAID), Springer, 1–18, https://doi.org/10.1007/978-94-007-6173-5_92-2.

  • Herrmann, S. M., and K. I. Mohr, 2011: A continental-scale classification of rainfall seasonality regimes in Africa based on gridded precipitation and land surface temperature products. J. Appl. Meteor. Climatol., 50, 25042513, https://doi.org/10.1175/JAMC-D-11-024.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hubau, W., and Coauthors, 2020: Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579, 8087, https://doi.org/10.1038/s41586-020-2035-0.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 06, 39 pp., https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karam, S., O. Seidou, N. Nagabhatia, D. Perera, and R. M. Tshimanga, 2022: Assessing the impacts of climate change on climatic extremes in the Congo River Basin. Climatic Change, 170, 40, https://doi.org/10.1007/s10584-022-03326-x.

    • Search Google Scholar
    • Export Citation
  • Khanna, J., K. H. Cook, and E. K. Vizy, 2020: Opposite spatial variability of climate change-induced surface temperature trends due to soil and atmospheric moisture in tropical/subtropical dry and wet land regions. Int. J. Climatol., 40, 58875905, https://doi.org/10.1002/joc.6554.

    • Search Google Scholar
    • Export Citation
  • Knoben, W. J. M., R. A. Woods, and J. E. Freer, 2019: Global bimodal precipitation seasonality: A systematic overview. Int. J. Climatol., 39, 558567, https://doi.org/10.1002/joc.5786.

    • Search Google Scholar
    • Export Citation
  • Kume, T., O. J. Manfroi, K. Kuraji, N. Tanaka, T. Horiuchi, M. Suzuki, and T. Kumagai, 2008: Estimation of canopy water storage capacity from sap flow measurements in a Bornean tropical rainforest. J. Hydrol., 352, 288295, https://doi.org/10.1016/j.jhydrol.2008.01.020.

    • Search Google Scholar
    • Export Citation
  • Maidment, R. I., R. P. Allan, and E. Black, 2015: Recent observed and simulated changes in precipitation over Africa. Geophys. Res. Lett., 42, 81558164, https://doi.org/10.1002/2015GL065765.

    • Search Google Scholar
    • Export Citation
  • Maidment, R. I., and Coauthors, 2017: A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data, 4, 170063, https://doi.org/10.1038/sdata.2017.63.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., and J. Wright, 2004: Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. Roy. Soc., B359, 311329, https://doi.org/10.1098/rstb.2003.1433.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2020: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13, 35713605, https://doi.org/10.5194/gmd-13-3571-2020.

    • Search Google Scholar
    • Export Citation
  • New, M., D. Lister, M. Hulme, and I. Makin, 2002: A high-resolution data set of surface climate over global land areas. Climate Res., 21, 125, https://doi.org/10.3354/cr021001.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., D. Klotter, A. K. Dezfuli, and L. Zhou, 2018: New rainfall datasets for the Congo Basin and surrounding regions. J. Hydrometeor., 19, 13791396, https://doi.org/10.1175/JHM-D-18-0015.1.

    • Search Google Scholar
    • Export Citation
  • Novella, N. S., and W. M. Thiaw, 2013: African Rainfall Climatology version 2 for Famine Early Warning Systems. J. Appl. Meteor. Climatol., 52, 588606, https://doi.org/10.1175/JAMC-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and K. H. Cook, 2013a: Mid-twenty-first century warm season climate change in the Central United States. Part I: Regional and global model predictions. Climate Dyn., 40, 551568, https://doi.org/10.1007/s00382-012-1605-8.

    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and K. H. Cook, 2013b: Mid-twenty-first century climate change in the Central United States. Part II: Climate change processes. Climate Dyn., 40, 569583, https://doi.org/10.1007/s00382-012-1379-z.

    • Search Google Scholar
    • Export Citation
  • Pau, S., M. Detto, Y. Kim, and C. J. Still, 2018: Tropical forest temperature thresholds for gross primary productivity. Ecosphere, 9, e02311, https://doi.org/10.1002/ecs2.2311.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A. C., H. S. Grantham, N. Aguilar-Amuchastegui, N. J. Murray, V. Gond, D. Bonfils, and O. Richenbach, 2021a: Forest condition in the Congo Basin for the assessment of ecosystem conservation status. Ecol. Indic., 122, 107268, https://doi.org/10.1016/j.ecolind.2020.107268.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A. C., K. P. Bernard, S. Zenobi, D. Mueller, N. Aguilar-Amuchastegui, and R. d’Annunzio, 2021b: Proximate causes of forest degradation in the Democratic Republic of the Congo vary in space and time. Front. Conserv. Sci., 2, 690562, https://doi.org/10.3389/fcosc.2021.690562.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tamoffo, A. T., and Coauthors, 2019: Process-oriented assessment of RCA4 regional climate model projections over the Congo Basin under 1.5°C and 2°C global warming levels: Influence of regional moisture fluxes. Climate Dyn., 53, 19111935, https://doi.org/10.1007/s00382-019-04751-y.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., K. H. Cook, J. Crétat, and N. Neupane, 2013: Projections of a wetter Sahel in the twenty-first century from global and regional models. J. Climate, 26, 46644687, https://doi.org/10.1175/JCLI-D-12-00533.1.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., H. Manoj, and K. H. Cook, 2023: Is the climate of the Congo Basin becoming less able to support a tropical forest ecosystem? J. Climate, 36, 81718193, https://doi.org/10.1175/JCLI-D-23-0275.1.

    • Search Google Scholar
    • Export Citation
  • Washington, R., R. James, H. Pearce, W. M. Pokam, and W. Moufouma-Okia, 2013: Congo Basin rainfall climatology: Can we believe the climate models? Philos. Trans. Roy. Soc., B368, 20120296, https://doi.org/10.1098/rstb.2012.0296.

    • Search Google Scholar
    • Export Citation
  • Wright, S. J., H. C. Muller-Landau, and J. Schipper, 2009: The future of tropical species on a warmer planet. Conserv. Biol., 23, 14181426, https://doi.org/10.1111/j.1523-1739.2009.01337.x.

    • Search Google Scholar
    • Export Citation
  • Zhao, S., K. H. Cook, and E. K. Vizy, 2024: Greenhouse gas-induced modification of intense storms over the west African Sahel through thermodynamic and dynamic processes. Climate Dyn., 62, 60976122, https://doi.org/10.1007/s00382-024-07193-3.

    • Search Google Scholar
    • Export Citation
  • Zhou, L. M., and Coauthors, 2014: Widespread decline of Congo rainforest greenness in the past decade. Nature, 509, 8690, https://doi.org/10.1038/nature13265.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6038 6038 0
Full Text Views 1627 1627 387
PDF Downloads 233 233 48