Tracing Shifts: Interdecadal Variations of NAO and PNA Patterns from the Nineteenth Century across Multiple Reanalyses

Vladimír Piskala Faculty of Science, Charles University, Prague, Czechia

Search for other papers by Vladimír Piskala in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7803-9509
and
Radan Huth Faculty of Science, Charles University, Prague, Czechia
Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czechia

Search for other papers by Radan Huth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the spatial structures of the North Atlantic Oscillation (NAO) and Pacific–North American (PNA) pattern across five reanalyses and investigates their temporal changes. Using winter monthly mean anomalies of 500-hPa geopotential heights from ensemble mean fields and individual ensemble members, we apply a moving principal component analysis (PCA) to 40-yr periods. Our findings reveal that the modes can vary significantly even with slight changes in the analyzed period. We observe that the lack of constraint over the North Pacific leads to different PNA patterns in individual ensemble members, resulting in a smoothed and weaker PNA in the ensemble mean. Therefore, we recommend using ensemble members instead of the ensemble mean before 1900 when analyzing low-frequency variability in 20CRv2 or 20CRv3. Despite differences in data assimilation, period length, and models among reanalyses, trends in explained variance and spatial changes of both PNA and NAO are similar. We also identified a decrease in the similarity of the NAO pattern around 1962–2001 across all datasets, linked to a sudden southward shift in the mode, indicating a change in variability in the reanalyses, independent of the data source or the model. The temporal changes, including long-term trends, likely have a fundamental basis, although sudden changes from period to period are rather artifacts from the PCA.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vladimír Piskala, vladimir.piskala@natur.cuni.cz; Radan Huth, radan.huth@natur.cuni.cz

Abstract

This study examines the spatial structures of the North Atlantic Oscillation (NAO) and Pacific–North American (PNA) pattern across five reanalyses and investigates their temporal changes. Using winter monthly mean anomalies of 500-hPa geopotential heights from ensemble mean fields and individual ensemble members, we apply a moving principal component analysis (PCA) to 40-yr periods. Our findings reveal that the modes can vary significantly even with slight changes in the analyzed period. We observe that the lack of constraint over the North Pacific leads to different PNA patterns in individual ensemble members, resulting in a smoothed and weaker PNA in the ensemble mean. Therefore, we recommend using ensemble members instead of the ensemble mean before 1900 when analyzing low-frequency variability in 20CRv2 or 20CRv3. Despite differences in data assimilation, period length, and models among reanalyses, trends in explained variance and spatial changes of both PNA and NAO are similar. We also identified a decrease in the similarity of the NAO pattern around 1962–2001 across all datasets, linked to a sudden southward shift in the mode, indicating a change in variability in the reanalyses, independent of the data source or the model. The temporal changes, including long-term trends, likely have a fundamental basis, although sudden changes from period to period are rather artifacts from the PCA.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vladimír Piskala, vladimir.piskala@natur.cuni.cz; Radan Huth, radan.huth@natur.cuni.cz

Supplementary Materials

    • Supplemental Materials (ZIP 24.157 MB)
Save
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baxter, S., and S. Nigam, 2013: A subseasonal teleconnection analysis: PNA development and its relationship to the NAO. J. Climate, 26, 67336741, https://doi.org/10.1175/JCLI-D-12-00426.1.

    • Search Google Scholar
    • Export Citation
  • Bell, B., and Coauthors, 2021: The ERA5 global reanalysis: Preliminary extension to 1950. Quart. J. Roy. Meteor. Soc., 147, 41864227, https://doi.org/10.1002/qj.4174.

    • Search Google Scholar
    • Export Citation
  • Börgel, F., C. Frauen, T. Neumann, and H. E. M. Meier, 2020: The Atlantic Multidecadal Oscillation controls the impact of the North Atlantic Oscillation on North European climate. Environ. Res. Lett., 15, 104025, https://doi.org/10.1088/1748-9326/aba925.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., B. Gan, L. Wu, and F. Jia, 2018: Pacific-North American teleconnection and North Pacific Oscillation: Historical simulation and future projection in CMIP5 models. Climate Dyn., 50, 43794403, https://doi.org/10.1007/s00382-017-3881-9.

    • Search Google Scholar
    • Export Citation
  • Chien, Y.-T., S.-Y. S. Wang, Y. Chikamoto, S. L. Voelker, J. D. D. Meyer, and J.-H. Yoon, 2019: North American winter dipole: Observed and simulated changes in circulations. Atmosphere, 10, 793, https://doi.org/10.3390/atmos10120793.

    • Search Google Scholar
    • Export Citation
  • Compagnucci, R. H., and M. B. Richman, 2008: Can principal component analysis provide atmospheric circulation or teleconnection patterns? Int. J. Climatol., 28, 703726, https://doi.org/10.1002/joc.1574.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Craddock, J. M., 1973: Problems and prospects for eigenvector analysis in meteorology. Statistician, 22, 133145, https://doi.org/10.2307/2987365.

    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, and T. Woollings, 2011: Changes of interannual NAO variability in response to greenhouse gases forcing. Climate Dyn., 37, 16211641, https://doi.org/10.1007/s00382-010-0936-6.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 14171452, https://doi.org/10.5194/acp-17-1417-2017.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., L. de la Torre, R. Nieto, R. García, E. Hernández, and P. Ribera, 2003: Changes in the relationship NAO–Northern Hemisphere temperature due to solar activity. Earth Planet. Sci. Lett., 206, 1520, https://doi.org/10.1016/S0012-821X(02)01090-7.

    • Search Google Scholar
    • Export Citation
  • Handorf, D., and K. Dethloff, 2012: How well do state-of-the-art atmosphere-ocean general circulation models reproduce atmospheric teleconnection patterns? Tellus, 64A, 19777, https://doi.org/10.3402/tellusa.v64i0.19777.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Search Google Scholar
    • Export Citation
  • Harman, H. H., 1976: Modern Factor Analysis. 3d ed. Rev. University of Chicago Press, 487 pp.

  • Harnik, N., and E. K. M. Chang, 2004: The Effects of variations in jet width on the growth of baroclinic waves: Implications for midwinter Pacific storm track variability. J. Atmos. Sci., 61, 2340, https://doi.org/10.1175/1520-0469(2004)061<0023:TEOVIJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hilmer, M., and T. Jung, 2000: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic Sea ice export. Geophys. Res. Lett., 27, 989992, https://doi.org/10.1029/1999GL010944.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, https://doi.org/10.1175/2011JCLI4097.1.

    • Search Google Scholar
    • Export Citation
  • Huth, R., 2006: The effect of various methodological options on the detection of leading modes of sea level pressure variability. Tellus, 58A, 121130, https://doi.org/10.1111/j.1600-0870.2006.00158.x.

    • Search Google Scholar
    • Export Citation
  • Huth, R., 2007: Arctic or North Atlantic Oscillation? Arguments based on the principal component analysis methodology. Theor. Appl. Climatol., 89 (1–2), 18, https://doi.org/10.1007/s00704-006-0257-1.

    • Search Google Scholar
    • Export Citation
  • Huth, R., and R. Beranová, 2021: How to recognize a true mode of atmospheric circulation variability. Earth Space Sci., 8, e2020EA001275, https://doi.org/10.1029/2020EA001275.

    • Search Google Scholar
    • Export Citation
  • Hynčica, M., and R. Huth, 2020: Modes of atmospheric circulation variability in the northern extratropics: A comparison of five reanalyses. J. Climate, 33, 10 70710 726, https://doi.org/10.1175/JCLI-D-19-0904.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. E., 2003: A User’s Guide to Principal Components. Wiley-Interscience, 569 pp.

  • Jung, T., M. Hilmer, E. Ruprecht, S. Kleppek, S. K. Gulev, and O. Zolina, 2003: Characteristics of the recent eastward shift of interannual NAO variability. J. Climate, 16, 33713382, https://doi.org/10.1175/1520-0442(2003)016<3371:COTRES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krueger, O., F. Schenk, F. Feser, and R. Weisse, 2013: Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J. Climate, 26, 868874, https://doi.org/10.1175/JCLI-D-12-00309.1.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. Mon. Wea. Rev., 6, 791802, https://doi.org/10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, J., K. R. Sperber, P. J. Gleckler, C. J. W. Bonfils, and K. E. Taylor, 2019: Quantifying the agreement between observed and simulated extratropical modes of interannual variability. Climate Dyn., 52, 40574089, https://doi.org/10.1007/s00382-018-4355-4.

    • Search Google Scholar
    • Export Citation
  • Lee, Y.-Y., J.-S. Kug, G.-H. Lim, and M. Watanabe, 2012: Eastward shift of the Pacific/North American pattern on an interdecadal time scale and an associated synoptic eddy feedback. Int. J. Climatol., 32, 11281134, https://doi.org/10.1002/joc.2329.

    • Search Google Scholar
    • Export Citation
  • Long, C. S., M. Fujiwara, S. Davis, D. M. Mitchell, and C. J. Wright, 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17, 14 59314 629, https://doi.org/10.5194/acp-17-14593-2017.

    • Search Google Scholar
    • Export Citation
  • Luo, D., and T. Gong, 2006: A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophys. Res. Lett., 33, L24815, https://doi.org/10.1029/2006GL027860.

    • Search Google Scholar
    • Export Citation
  • Luo, D., Z. Zhu, R. Ren, L. Zhong, and C. Wang, 2010: Spatial pattern and zonal shift of the North Atlantic Oscillation. Part I: A dynamical interpretation. J. Atmos. Sci., 67, 28052826, https://doi.org/10.1175/2010JAS3345.1.

    • Search Google Scholar
    • Export Citation
  • Mezzina, B., J. García-Serrano, I. Bladé, and F. Kucharski, 2020: Dynamics of the ENSO teleconnection and NAO variability in the North Atlantic–European late winter. J. Climate, 33, 907923, https://doi.org/10.1175/JCLI-D-19-0192.1.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., I. A. Renfrew, and R. S. Pickart, 2013: Multidecadal mobility of the North Atlantic Oscillation. J. Climate, 26, 24532466, https://doi.org/10.1175/JCLI-D-12-00023.1.

    • Search Google Scholar
    • Export Citation
  • Peres-Neto, P. R., D. A. Jackson, and K. M. Somers, 2005: How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal., 49, 974997, https://doi.org/10.1016/j.csda.2004.06.015.

    • Search Google Scholar
    • Export Citation
  • Piskala, V., and R. Huth, 2023: Identifying shifts in modes of low-frequency circulation variability using the 20CR renalysis ensemble. J. Climate, 36, 77717783, https://doi.org/10.1175/JCLI-D-22-0620.1.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Richman, M. B., and P. J. Lamb, 1985: Climatic pattern analysis of three- and seven-day summer rainfall in the central United States: Some methodological considerations and a regionalization. J. Climate Appl. Meteor., 24, 13251343, https://doi.org/10.1175/1520-0450(1985)024<1325:CPAOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, J., and M. McHugh, 2002: On the separability of the North Atlantic oscillation and Arctic oscillation. Climate Dyn., 19, 599608, https://doi.org/10.1007/s00382-002-0247-7.

    • Search Google Scholar
    • Export Citation
  • Rohrer, M., S. Brönnimann, O. Martius, C. C. Raible, and M. Wild, 2019: Decadal variations of blocking and storm tracks in centennial reanalyses. Tellus, 71A, 1586236, https://doi.org/10.1080/16000870.2019.1586236.

    • Search Google Scholar
    • Export Citation
  • Sibson, R., 1981: A brief description of natural neighbour interpolation. Interpreting Multivariate Data, V. Barnett, Ed., Wiley, 21–36.

  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the twentieth century reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2021: An evaluation of the performance of the Twentieth Century Reanalysis version 3. J. Climate, 34, 14171438, https://doi.org/10.1175/JCLI-D-20-0505.1.

    • Search Google Scholar
    • Export Citation
  • Sturaro, G., 2003: Patterns of variability in the satellite microwave sounding unit temperature record: Comparison with surface and reanalysis data. Int. J. Climatol., 23, 17991820, https://doi.org/10.1002/joc.975.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dyn., 15, 551559, https://doi.org/10.1007/s003820050299.

    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., S. Saha, and Å. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13, 14211435, https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vietinghoff, D., C. Heine, M. Böttinger, N. Maher, J. Jungclaus, and G. Scheuermann, 2021: Visual analysis of spatio-temporal trends in time-dependent ensemble data sets on the example of the North Atlantic Oscillation. 2021 IEEE 14th Pacific Visualization Symp. (PacificVis), Tianjin, China, Institute of Electrical and Electronics Engineers, 71–80, https://doi.org/10.1109/PacificVis52677.2021.00017.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and K.-H. Lau, 1993: Structure and seasonality of interannual and interdecadal variability of the geopotential height and temperature fields in the Northern Hemisphere troposphere. J. Climate, 6, 20632082, https://doi.org/10.1175/1520-0442(1993)006<2063:SASOIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, G. P. Compo, V. R. Swail, F. W. Zwiers, R. J. Allan, and P. D. Sardeshmukh, 2013: Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dyn., 40, 27752800, https://doi.org/10.1007/s00382-012-1450-9.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, R. Chan, and V. Isaac, 2016: Inter-comparison of extra-tropical cyclone activity in nine reanalysis datasets. Atmos. Res., 181, 133153, https://doi.org/10.1016/j.atmosres.2016.06.010.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-H., G. Magnusdottir, H. Stern, X. Tian, and Y. Yu, 2012: Decadal variability of the NAO: Introducing an augmented NAO index. Geophys. Res. Lett., 39, L21702, https://doi.org/10.1029/2012GL053413.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, https://doi.org/10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 137 137
PDF Downloads 124 124 124