Cold-Season Precipitation Trend in Subtropical East Asia Tied to Shifting Westerlies: Role of Tibetan Plateau

Chao He College of Environment and Climate, Jinan University, Guangzhou, China

Search for other papers by Chao He in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5842-9617
Restricted access

Abstract

Precipitation in the late cold season (February–April) over subtropical East Asia (STEA) exhibits a negative trend from 1979 to the present, primarily due to weakening ascent motion. This study investigates the mechanism of weakening ascent over STEA and identifies the poleward-shifting westerlies as a key driver. On an interannual time scale, a poleward shift of the westerlies leads to weakened southern branch westerlies (SBW) on the southern side of the Tibetan Plateau (TP), which further leads to a weaker downstream southerly wind component over STEA, associated with weaker ascent motion generated by isentropic upglide of the southerly flow. During the post-1979 epoch, the SBW shows a substantial weakening trend in the late cold season as a regional manifestation of the planetary-scale poleward-shifting westerlies, which suppresses the ascent motion over STEA and accounts for more than half of the decreasing precipitation over STEA in the late cold season. TP plays a key role in connecting SBW to the southerly flow and ascent motion over STEA in the cold season, and the absence of weakening SBW also explains the absence of a drying trend over STEA in the early cold season. External forcing leads to a moderate poleward shift of planetary-scale westerlies in the entire cold season based on climate model simulations, but it cannot explain the seasonality and magnitude of the observed trend in SBW. Decadal-scale internal variability may have largely boosted the poleward-shifting westerlies in the late cold season but offset it in the early cold season.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chao He, hechao@jnu.edu.cn

Abstract

Precipitation in the late cold season (February–April) over subtropical East Asia (STEA) exhibits a negative trend from 1979 to the present, primarily due to weakening ascent motion. This study investigates the mechanism of weakening ascent over STEA and identifies the poleward-shifting westerlies as a key driver. On an interannual time scale, a poleward shift of the westerlies leads to weakened southern branch westerlies (SBW) on the southern side of the Tibetan Plateau (TP), which further leads to a weaker downstream southerly wind component over STEA, associated with weaker ascent motion generated by isentropic upglide of the southerly flow. During the post-1979 epoch, the SBW shows a substantial weakening trend in the late cold season as a regional manifestation of the planetary-scale poleward-shifting westerlies, which suppresses the ascent motion over STEA and accounts for more than half of the decreasing precipitation over STEA in the late cold season. TP plays a key role in connecting SBW to the southerly flow and ascent motion over STEA in the cold season, and the absence of weakening SBW also explains the absence of a drying trend over STEA in the early cold season. External forcing leads to a moderate poleward shift of planetary-scale westerlies in the entire cold season based on climate model simulations, but it cannot explain the seasonality and magnitude of the observed trend in SBW. Decadal-scale internal variability may have largely boosted the poleward-shifting westerlies in the late cold season but offset it in the early cold season.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chao He, hechao@jnu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.0559 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., J. R. Norris, and M. Kovilakam, 2014: Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width. Nat. Geosci., 7, 270274, https://doi.org/10.1038/ngeo2091.

    • Search Google Scholar
    • Export Citation
  • Bai, H., H. Hu, W. Perrie, and N. Zhang, 2020: On the characteristics and climate effects of HV-WCP events over the Kuroshio SST front during wintertime. Climate Dyn., 55, 21232148, https://doi.org/10.1007/s00382-020-05373-5.

    • Search Google Scholar
    • Export Citation
  • Bell, B., and Coauthors, 2021: The ERA5 global reanalysis: Preliminary extension to 1950. Quart. J. Roy. Meteor. Soc., 147, 41864227, https://doi.org/10.1002/qj.4174.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and S. Pascale, 2021: Mechanical forcing of the North American monsoon by orography. Nature, 599, 611615, https://doi.org/10.1038/s41586-021-03978-2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, https://doi.org/10.1175/2008JCLI2306.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., T. Zhao, L. Hua, J. Yu, Y. Wang, and C. Xu, 2023: Future drought changes in China projected by the CMIP6 models: Contributions from key factors. J. Meteor. Res., 37, 454468, https://doi.org/10.1007/s13351-023-2169-8.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., M. Wang, H. Zhang, S. Lin, Z. Guo, Y. Jiang, and C. Zhou, 2022: Long-term change in low-cloud cover in Southeast China during cold seasons. Atmos. Ocean. Sci. Lett., 15, 100222, https://doi.org/10.1016/j.aosl.2022.100222.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “Rich-Get-Richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., K. AchutaRao, K. Ashok, S. Bhandari, A. K. Mitra, S. Prakash, R. Srivastava, and A. Turner, 2013: Observational challenges in evaluating climate models. Nat. Climate Change, 3, 940941, https://doi.org/10.1038/nclimate2012.

    • Search Google Scholar
    • Export Citation
  • Dai, P., and J. Nie, 2021: What controls the interannual variability of extreme precipitation? Geophys. Res. Lett., 48, e2021GL095503, https://doi.org/10.1029/2021GL095503.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 10611078, https://doi.org/10.1175/JCLI-D-11-00127.1.

    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, L. Shaffrey, and B. Harvey, 2022: Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions. Nat. Commun., 13, 1148, https://doi.org/10.1038/s41467-022-28816-5.

    • Search Google Scholar
    • Export Citation
  • Dong, Z., R. Yang, J. Cao, L. Wang, and J. Cheng, 2023: A strong high-temperature event in late-spring 2023 in Yunnan province, Southwest China: Characteristics and possible causes. Atmos. Res., 295, 107017, https://doi.org/10.1016/j.atmosres.2023.107017.

    • Search Google Scholar
    • Export Citation
  • Duan, A., G. Wu, Y. Liu, Y. Ma, and P. Zhao, 2012: Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci., 29, 978992, https://doi.org/10.1007/s00376-012-1220-y.

    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041711, https://doi.org/10.1002/2013GL059158.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Feng, J., J. Li, J. Zhu, and H. Liao, 2016: Influences of El Niño Modoki event 1994/1995 on aerosol concentrations over southern China. J. Geophys. Res. Atmos., 121, 16371651, https://doi.org/10.1002/2015JD023659.

    • Search Google Scholar
    • Export Citation
  • Feng, W., M. Y. T. Leung, D. Wang, W. Zhou, and O. Y. W. Zhang, 2022: An extreme drought over South China in 2020/21 concurrent with an unprecedented warm northwest Pacific and La Niña. Adv. Atmos. Sci., 39, 16371649, https://doi.org/10.1007/s00376-022-1456-0.

    • Search Google Scholar
    • Export Citation
  • Gao, C., and G. Li, 2023: Enhanced seasonal predictability of spring soil moisture over the Indo-China Peninsula for eastern China Summer precipitation under non-ENSO conditions. Adv. Atmos. Sci., 40, 16321648, https://doi.org/10.1007/s00376-023-2361-x.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and L. M. Polvani, 2015: Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends. Geophys. Res. Lett., 42, 10 82410 831, https://doi.org/10.1002/2015GL066942.

    • Search Google Scholar
    • Export Citation
  • He, C., 2023: Future drying subtropical East Asia in winter: Mechanism and observational constraint. J. Climate, 36, 29852998, https://doi.org/10.1175/JCLI-D-22-0347.1.

    • Search Google Scholar
    • Export Citation
  • He, C., and T. Li, 2019: Does global warming amplify interannual climate variability? Climate Dyn., 52, 26672684, https://doi.org/10.1007/s00382-018-4286-0.

    • Search Google Scholar
    • Export Citation
  • He, C., M. Collins, T. Zhou, X. Jiang, P. Wu, and N. Dunstone, 2024: Contrasting East Asian climate extremes in 2020 and 2022 tied to zonal flow. Environ. Res. Lett., 19, 104019, https://doi.org/10.1088/1748-9326/ad6a72.

    • Search Google Scholar
    • Export Citation
  • He, J., J. Ju, Z. Wen, J. , and Q. Jin, 2007: A review of recent advances in research on Asian monsoon in China. Adv. Atmos. Sci., 24, 972992, https://doi.org/10.1007/s00376-007-0972-2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holden, Z. A., and Coauthors, 2018: Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl. Acad. Sci. USA, 115, E8349E8357, https://doi.org/10.1073/pnas.1802316115.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., M. Pedder, and D. W. Jones, 2003: The omega equation and potential vorticity. Quart. J. Roy. Meteor. Soc., 129, 32773303, https://doi.org/10.1256/qj.02.135.

    • Search Google Scholar
    • Export Citation
  • Hsu, P., and T. Li, 2012: Is “rich-get-richer” valid for Indian Ocean and Atlantic ITCZ? Geophys. Res. Lett., 39, L13705, https://doi.org/10.1029/2012GL052399.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, https://doi.org/10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and S.-P. Xie, 2015: Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci., 8, 922926, https://doi.org/10.1038/ngeo2571.

    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, https://doi.org/10.1038/ngeo1792.

    • Search Google Scholar
    • Export Citation
  • Iizuka, S., 2010: Simulations of wintertime precipitation in the vicinity of Japan: Sensitivity to fine-scale distributions of sea surface temperature. J. Geophys. Res., 115, D10107, https://doi.org/10.1029/2009JD012576.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 2017: The Asian monsoon and its future change in climate models: A review. J. Meteor. Soc. Japan, 95, 733, https://doi.org/10.2151/jmsj.2017-002.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kondo, Y., N. Moteki, N. Oshima, S. Ohata, M. Koike, Y. Shibano, N. Takegawa, and K. Kita, 2016: Effects of wet deposition on the abundance and size distribution of black carbon in East Asia. J. Geophys. Res. Atmos., 121, 46914712, https://doi.org/10.1002/2015JD024479.

    • Search Google Scholar
    • Export Citation
  • Lepawsky, J., 2024: Climate change induced water stress and future semiconductor supply chain risk. iScience, 27, 108791, https://doi.org/10.1016/j.isci.2024.108791.

    • Search Google Scholar
    • Export Citation
  • Li, J., R. Yu, T. Zhou, and B. Wang, 2005: Why is there an early spring cooling shift downstream of the Tibetan Plateau? J. Climate, 18, 46604668, https://doi.org/10.1175/JCLI3568.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., W.-C. Wang, J. Mao, Z. Wang, G. Zeng, and G. Chen, 2019: Persistent spring shortwave cloud radiative effect and the associated circulations over southeastern China. J. Climate, 32, 30693087, https://doi.org/10.1175/JCLI-D-18-0385.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., R. Geen, J. Mao, Y. Song, G. K. Vallis, and G. Wu, 2023: Mechanical and thermal forcings of Asian large-scale orography on spring cloud amount and atmospheric radiation budget over East Asia. J. Climate, 36, 52155232, https://doi.org/10.1175/JCLI-D-22-0797.1.

    • Search Google Scholar
    • Export Citation
  • Li, S., Z. Han, and H. Chen, 2017: A comparison of the effects of interannual Arctic sea ice loss and ENSO on winter haze days: Observational analyses and AGCM simulations. J. Meteor. Res., 31, 820833, https://doi.org/10.1007/s13351-017-7017-2.

    • Search Google Scholar
    • Export Citation
  • Li, X., and W. Zhou, 2016: Modulation of the interannual variation of the India-Burma Trough on the winter moisture supply over Southwest China. Climate Dyn., 46, 147158, https://doi.org/10.1007/s00382-015-2575-4.

    • Search Google Scholar
    • Export Citation
  • Li, X., Y. D. Chen, and W. Zhou, 2017: Response of winter moisture circulation to the India–Burma Trough and its modulation by the South Asian waveguide. J. Climate, 30, 11971210, https://doi.org/10.1175/JCLI-D-16-0111.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Zhou, S. Yang, R. Zhang, H.-N. Cheung, and Y. Zhang, 2022: Recent early-spring drying trend over southern China associated with changes in the zonal thermal contrast over the Pacific. J. Climate, 35, 64876498, https://doi.org/10.1175/JCLI-D-21-0891.1.

    • Search Google Scholar
    • Export Citation
  • Liang, W., and M. Zhang, 2021: Summer and winter precipitation in East Asia scale with global warming at different rates. Commun. Earth Environ., 2, 150, https://doi.org/10.1038/s43247-021-00219-2.

    • Search Google Scholar
    • Export Citation
  • Lin, X., B. Lu, G. Li, C. Gao, and L. Chen, 2023: Asymmetric impacts of El Niño–Southern Oscillation on the winter precipitation over South China: The role of the India–Burma Trough. Climate Dyn., 61, 22112227, https://doi.org/10.1007/s00382-023-06675-0.

    • Search Google Scholar
    • Export Citation
  • Littell, J. S., D. L. Peterson, K. L. Riley, Y. Liu, and C. H. Luce, 2016: A review of the relationships between drought and forest fire in the United States. Global Change Biol., 22, 23532369, https://doi.org/10.1111/gcb.13275.

    • Search Google Scholar
    • Export Citation
  • Liu, L., R. Zhang, and Z. Zuo, 2017: Effect of spring precipitation on summer precipitation in eastern China: Role of soil moisture. J. Climate, 30, 91839194, https://doi.org/10.1175/JCLI-D-17-0028.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Q. Bao, A. Duan, Z. Qian, and G. Wu, 2007: Recent progress in the impact of the Tibetan Plateau on climate in China. Adv. Atmos. Sci., 24, 10601076, https://doi.org/10.1007/s00376-007-1060-3.

    • Search Google Scholar
    • Export Citation
  • Maher, N., and Coauthors, 2019: The Max Planck Institute grand ensemble: Enabling the exploration of climate system variability. J. Adv. Model. Earth Syst., 11, 20502069, https://doi.org/10.1029/2019MS001639.

    • Search Google Scholar
    • Export Citation
  • Maher, P., M. E. Kelleher, P. G. Sansom, and J. Methven, 2020: Is the subtropical jet shifting poleward? Climate Dyn., 54, 17411759, https://doi.org/10.1007/s00382-019-05084-6.

    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Search Google Scholar
    • Export Citation
  • McDonald, R. E., 2010: Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Climate Dyn., 37, 13991425, https://doi.org/10.1007/s00382-010-0916-x.

    • Search Google Scholar
    • Export Citation
  • Miao, J., T. Wang, and D. Chen, 2020: More robust changes in the East Asian winter monsoon from 1.5 to 2.0°C global warming targets. Int. J. Climatol., 40, 47314749, https://doi.org/10.1002/joc.6485.

    • Search Google Scholar
    • Export Citation
  • Murazaki, K., H. Tsujino, T. Motoi, and K. Kurihara, 2015: Influence of the Kuroshio Large Meander on the climate around Japan based on a regional climate model. J. Meteor. Soc. Japan, 93, 161179, https://doi.org/10.2151/jmsj.2015-009.

    • Search Google Scholar
    • Export Citation
  • Narvaez, L., S. Janzen, C. Eberle, and Z. Sebesvari, 2022: Technical Report: Taiwan drought. United Nations University - Institute for Environment and Human Security (UNU-EHS), 23 pp., https://doi.org/10.53324/UJZW5639.

  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, https://doi.org/10.1175/JCLI-D-12-00224.1.

    • Search Google Scholar
    • Export Citation
  • Ni, Y., and P.-C. Hsu, 2018: Inter-annual variability of global monsoon precipitation in present-day and future warming scenarios based on 33 Coupled Model Intercomparison Project Phase 5 models. Int. J. Climatol., 38, 48754890, https://doi.org/10.1002/joc.5704.

    • Search Google Scholar
    • Export Citation
  • Nie, J., A. H. Sobel, D. A. Shaevitz, and S. Wang, 2018: Dynamic amplification of extreme precipitation sensitivity. Proc. Natl. Acad. Sci., 115, 94679472, https://doi.org/10.1073/pnas.1800357115.

    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Search Google Scholar
    • Export Citation
  • Rathore, S., N. L. Bindoff, H. E. Phillips, and M. Feng, 2020: Recent hemispheric asymmetry in global ocean warming induced by climate change and internal variability. Nat. Commun., 11, 2008, https://doi.org/10.1038/s41467-020-15754-3.

    • Search Google Scholar
    • Export Citation
  • Rong, Y., L. Zhang, and F. Wu, 2020: An investigation of heat source effect of Tibetan Plateau on the wintertime India-Burma Trough. Global Planet. Change, 192, 103222, https://doi.org/10.1016/j.gloplacha.2020.103222.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, https://doi.org/10.1175/2009JCLI3128.1.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, https://doi.org/10.1175/2008JCLI2625.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s Tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Seo, E., M.-I. Lee, and R. H. Reichle, 2021: Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the local ensemble transform Kalman Filter. Remote Sens. Environ., 253, 112222, https://doi.org/10.1016/j.rse.2020.112222.

    • Search Google Scholar
    • Export Citation
  • Sha, Y., Z. Shi, X. Li, H. Cheng, X. Liu, and Z. An, 2023: Distinct orographic controls on the asymmetrical onset of the South Asian summer monsoon: Hindu Kush versus Himalaya–Tibet. J. Climate, 36, 66496667, https://doi.org/10.1175/JCLI-D-22-0121.1.

    • Search Google Scholar
    • Export Citation
  • Sheng, C., G. Wu, Y. Liu, and B. He, 2024: Roles of thermal forced and eddy-driven effects in the northward shifting of the subtropical westerly jet under recent climate change. J. Geophys. Res. Atmos., 129, e2023JD039937, https://doi.org/10.1029/2023JD039937.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Sippel, S., N. Meinshausen, E. Székely, E. Fischer, A. G. Pendergrass, F. Lehner, and R. Knutti, 2021: Robust detection of forced warming in the presence of potentially large climate variability. Sci. Adv., 7, eabh4429, https://doi.org/10.1126/sciadv.abh4429.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and R. E. Davis, 2007: Winter jet stream trends over the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 133, 21092115, https://doi.org/10.1002/qj.171.

    • Search Google Scholar
    • Export Citation
  • Tian, S.-F., and T. Yasunari, 1998: Climatological aspects and mechanism of spring persistent rains over central China. J. Meteor. Soc. Japan, 76, 5771, https://doi.org/10.2151/jmsj1965.76.1_57.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 2009: Shifting westerlies. Science, 323, 14341435, https://doi.org/10.1126/science.1169823.

  • Torralba, V., F. J. Doblas-Reyes, and N. Gonzalez-Reviriego, 2017: Uncertainty in recent near-surface wind speed trends: A global reanalysis intercomparison. Environ. Res. Lett., 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58.

    • Search Google Scholar
    • Export Citation
  • Wan, R., and G. Wu, 2007: Mechanism of the Spring Persistent Rains over southeastern China. Sci. China., 50D, 130144, https://doi.org/10.1007/s11430-007-2069-2.

    • Search Google Scholar
    • Export Citation
  • Wan, R., B. Zhao, and G. Wu, 2009: New evidences on the climatic causes of the formation of the spring persistent rains over southeastern China. Adv. Atmos. Sci., 26, 10811087, https://doi.org/10.1007/s00376-009-7202-z.

    • Search Google Scholar
    • Export Citation
  • Wang, L., G. Huang, W. Chen, T. Wang, C. Chotamonsak, and A. Limsakul, 2022: Decadal background for active extreme drought episodes in the decade of 2010–19 over southeastern Mainland Asia. J. Climate, 35, 27852803, https://doi.org/10.1175/JCLI-D-21-0561.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., G. Huang, W. Chen, and T. Wang, 2023: Super drought under global warming: Concept, monitoring index, and validation. Bull. Amer. Meteor. Soc., 104, E943E969, https://doi.org/10.1175/BAMS-D-22-0182.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and H. Zuo, 2016: Effect of the East Asian westerly jet’s intensity on summer rainfall in the Yangtze River valley and its mechanism. J. Climate, 29, 23952406, https://doi.org/10.1175/JCLI-D-15-0259.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., H. Zuo, S. Zhao, J. Zhang, and S. Lu, 2018: How East Asian westerly jet’s meridional position affects the summer rainfall in Yangtze-Huaihe River Valley? Climate Dyn., 51, 41094121, https://doi.org/10.1007/s00382-017-3591-3.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-X., H.-C. Zuo, F. Sun, L.-Y. Wu, Y. Yin, and J.-J. Luo, 2021: Dynamics of East Asian spring rainband and spring–autumn contrast: Environmental forcings of large-scale circulation. J. Climate, 34, 35233541, https://doi.org/10.1175/JCLI-D-20-0501.1.

    • Search Google Scholar
    • Export Citation
  • Wang, T., S. Yang, Z. Wen, R. Wu, and P. Zhao, 2011: Variations of the winter India-Burma Trough and their links to climate anomalies over southern and eastern Asia. J. Geophys. Res., 116, D23118, https://doi.org/10.1029/2011JD016373.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C. J., R. H. White, and X. J. Levine, 2019: Northern Hemisphere stationary waves in a changing climate. Curr. Climate Change Rep., 5, 372389, https://doi.org/10.1007/s40641-019-00147-6.

    • Search Google Scholar
    • Export Citation
  • Wu, G., T. Ma, Y. Liu, and Z. Jiang, 2020: PV-Q perspective of cyclogenesis and vertical velocity development downstream of the Tibetan Plateau. J. Geophys. Res. Atmos., 125, e2019JD030912, https://doi.org/10.1029/2019JD030912.

    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Su, X. Zeng, D. J. Posselt, S. Wong, S. Chen, and A. Stoffelen, 2024: Uncertainty of atmospheric winds in three widely used global reanalysis datasets. J. Appl. Meteor. Climatol., 63, 165180, https://doi.org/10.1175/JAMC-D-22-0198.1.

    • Search Google Scholar
    • Export Citation
  • Xu, M., H. Xu, and J. Ma, 2016: Responses of the East Asian winter monsoon to global warming in CMIP5 models. Int. J. Climatol., 36, 21392155, https://doi.org/10.1002/joc.4480.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11, 463482, https://doi.org/10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, J., B. He, C. Fan, R. Chen, H. Zhang, and Y. Zhang, 2024: Drought-related wildfire accounts for one-third of the forest wildfires in subtropical China. Agric. For. Meteor., 346, 109893, https://doi.org/10.1016/j.agrformet.2024.109893.

    • Search Google Scholar
    • Export Citation
  • Yin, Z., S. Yang, and W. Wei, 2023: Quantitative attribution of vertical motions responsible for the early spring drought conditions over southeastern China. Climate Dyn., 61, 26552672, https://doi.org/10.1007/s00382-023-06708-8.

    • Search Google Scholar
    • Export Citation
  • Yoon, D., and Coauthors, 2023: Role of land–atmosphere interaction in the 2016 Northeast Asia heat wave: Impact of soil moisture initialization. J. Geophys. Res. Atmos., 128, e2022JD037718, https://doi.org/10.1029/2022JD037718.

    • Search Google Scholar
    • Export Citation
  • Yu, R. C., B. Wang, and T. Zhou, 2004: Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J. Climate, 17, 27022713, https://doi.org/10.1175/1520-0442(2004)017<2702:CEOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. Yang, Z. Wang, H. Luo, and K. Deng, 2024: Weakened subtropical westerlies and their deflection by the Tibetan plateau contribute to drying southeastern China in early spring. Geophys. Res. Lett., 51, e2024GL109795, https://doi.org/10.1029/2024GL109795.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., T. Y. Gan, and X. Su, 2022: Twenty-first century drought analysis across China under climate change. Climate Dyn., 59, 16651685, https://doi.org/10.1007/s00382-021-06064-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., S. Wang, Y. Zhang, and J. Feng, 2018: Drought events and its causes in spring of 2018 in China. J. Arid Meteor., 36, 529534.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. Zhou, X. Chen, P. Wu, N. Christidis, and F. C. Lott, 2020: The late spring drought of 2018 in South China. Bull. Amer. Meteor. Soc., 101 (1), S59S64, https://doi.org/10.1175/BAMS-D-19-0202.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Z. Chen, and T. Zhou, 2021: Human influence on the increasing drought risk over Southeast Asian monsoon region. Geophys. Res. Lett., 48, e2021GL093777, https://doi.org/10.1029/2021GL093777.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., and Coauthors, 2019: Characteristics of drought in Southern China under climatic warming, the risk, and countermeasures for prevention and control. Theor. Appl. Climatol., 136, 11571173, https://doi.org/10.1007/s00704-018-2541-2.

    • Search Google Scholar
    • Export Citation
  • Zhao, F., and Y. Liu, 2021: Important meteorological predictors for long-range wildfires in China. For. Ecol. Manage., 499, 119638, https://doi.org/10.1016/j.foreco.2021.119638.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., R. Zhang, J. Liu, X. Zhou, and J. He, 2007: Onset of southwesterly wind over eastern China and associated atmospheric circulation and rainfall. Climate Dyn., 28, 797811, https://doi.org/10.1007/s00382-006-0212-y.

    • Search Google Scholar
    • Export Citation
  • Zhou, H., W. Zhou, Y. Liu, Y. Yuan, J. Huang, and Y. Liu, 2020: Identifying spatial extent of meteorological droughts: An examination over a humid region. J. Hydrol., 591, 125505, https://doi.org/10.1016/j.jhydrol.2020.125505.

    • Search Google Scholar
    • Export Citation
  • Zhou, H., W. Zhou, Y. Liu, J. Huang, Y. Yuan, and Y. Liu, 2023: Climatological spatial scales of meteorological droughts in China and associated climate variability. J. Hydrol., 617, 129056, https://doi.org/10.1016/j.jhydrol.2022.129056.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2022: A year of unprecedented climate extremes in Eastern Asia, North America, and Europe. Adv. Atmos. Sci., 39, 15981607, https://doi.org/10.1007/s00376-022-2063-9.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., X. Zhou, P. Zhao, L. Chen, and J. He, 2011: Onset of East Asian subtropical summer monsoon and rainy season in China. Sci. China Earth Sci., 54, 18451853, https://doi.org/10.1007/s11430-011-4284-0.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., T. Li, and J. He, 2014: Out-of-phase relationship between boreal spring and summer decadal rainfall changes in southern China. J. Climate, 27, 10831099, https://doi.org/10.1175/JCLI-D-13-00180.1.

    • Search Google Scholar
    • Export Citation
  • Zou, L., and T. Zhou, 2017: Dynamical downscaling of East Asian winter monsoon changes with a regional ocean–atmosphere coupled model. Quart. J. Roy. Meteor. Soc., 143, 22452259, https://doi.org/10.1002/qj.3082.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 132 132 24
Full Text Views 627 627 617
PDF Downloads 226 226 218