Reducing Initialization Shock by Atmosphere–Ocean Coupled Data Assimilation and Its Impacts on the Subseasonal Prediction Skill

Nakbin Choi Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Nakbin Choi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8696-5916
,
Myong-In Lee Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Myong-In Lee in
Current site
Google Scholar
PubMed
Close
,
Yoo-Geun Ham Department of Oceanography, Chonnam National University, Gwangju, South Korea

Search for other papers by Yoo-Geun Ham in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0236-6968
,
Yu-Kyung Hyun Climate Research Department, National Institute of Meteorological Sciences, Jeju-do, South Korea

Search for other papers by Yu-Kyung Hyun in
Current site
Google Scholar
PubMed
Close
,
Johan Lee Climate Research Department, National Institute of Meteorological Sciences, Jeju-do, South Korea

Search for other papers by Johan Lee in
Current site
Google Scholar
PubMed
Close
, and
Kyung-On Boo Climate Research Department, National Institute of Meteorological Sciences, Jeju-do, South Korea

Search for other papers by Kyung-On Boo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmosphere–ocean coupled model predictions have been hindered by the imbalance of initial states between atmosphere and ocean obtained from independent data assimilation systems. This study tests an atmosphere–ocean coupled data assimilation (CDA) method applied to a state-of-the-art coupled global climate model, the Global Seasonal Forecasting System, version 5 (GloSea5), and investigates its impacts on forecast skills. Weakly coupled data assimilation (WCDA) combines preexisting atmosphere and ocean analysis fields with the coupled model background states, for which the incremental analysis update (IAU) is employed to gradually adjust from the background states to the analysis fields yet maintain balanced states between atmosphere and ocean. While the global analysis from WCDA maintains comparable quality in the spatial distribution of temperature and precipitation to existing reanalysis datasets, it improves the tropical precipitation variability due to the atmosphere–ocean coupling. In short-range forecasting from WCDA, the widespread bias of surface air temperature is reduced, which was originally induced by the differences between sea surface temperature (SST) in the atmospheric initial conditions and that in the oceanic initial conditions. The WCDA impact on the forecast skill is more pronounced in the subseasonal time-scale Madden–Julian oscillation (MJO) forecasts by reducing initialization shock in moisture; otherwise, atmospheric convection becomes much suppressed initially and then suddenly produces a large amount of precipitation in the forecasts from uncoupled initialization.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Myong-In Lee, milee@unist.ac.kr

Abstract

Atmosphere–ocean coupled model predictions have been hindered by the imbalance of initial states between atmosphere and ocean obtained from independent data assimilation systems. This study tests an atmosphere–ocean coupled data assimilation (CDA) method applied to a state-of-the-art coupled global climate model, the Global Seasonal Forecasting System, version 5 (GloSea5), and investigates its impacts on forecast skills. Weakly coupled data assimilation (WCDA) combines preexisting atmosphere and ocean analysis fields with the coupled model background states, for which the incremental analysis update (IAU) is employed to gradually adjust from the background states to the analysis fields yet maintain balanced states between atmosphere and ocean. While the global analysis from WCDA maintains comparable quality in the spatial distribution of temperature and precipitation to existing reanalysis datasets, it improves the tropical precipitation variability due to the atmosphere–ocean coupling. In short-range forecasting from WCDA, the widespread bias of surface air temperature is reduced, which was originally induced by the differences between sea surface temperature (SST) in the atmospheric initial conditions and that in the oceanic initial conditions. The WCDA impact on the forecast skill is more pronounced in the subseasonal time-scale Madden–Julian oscillation (MJO) forecasts by reducing initialization shock in moisture; otherwise, atmospheric convection becomes much suppressed initially and then suddenly produces a large amount of precipitation in the forecasts from uncoupled initialization.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Myong-In Lee, milee@unist.ac.kr

Supplementary Materials

    • Supplemental Materials (PDF 0.6782 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, https://doi.org/10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., M. Zhao, P. A. Dirmeyer, and A. C. M. Beljaars, 2006: Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J. Geophys. Res., 111, D22S04, https://doi.org/10.1029/2006JD007174.

    • Search Google Scholar
    • Export Citation
  • Blockley, E. W., and Coauthors, 2014: Recent development of the Met Office operational ocean forecasting system: An overview and assessment of the new Global FOAM forecasts. Geosci. Model Dev., 7, 26132638, https://doi.org/10.5194/gmd-7-2613-2014.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. Da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767776, https://doi.org/10.1002/qj.394.

    • Search Google Scholar
    • Export Citation
  • Browne, P. A., P. de Rosnay, H. Zuo, A. Bennett, and A. Dawson, 2019: Weakly coupled ocean–atmosphere data assimilation in the ECMWF NWP system. Remote Sens., 11, 234, https://doi.org/10.3390/rs11030234.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, https://doi.org/10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Fallmann, J., H. Lewis, J. M. Castillo, A. Arnold, and S. Ramsdale, 2017: Impact of sea surface temperature on stratiform cloud formation over the North Sea. Geophys. Res. Lett., 44, 42964303, https://doi.org/10.1002/2017GL073105.

    • Search Google Scholar
    • Export Citation
  • Feng, X., K. Haines, C. Liu, E. de Boisséson, and I. Polo, 2018: Improved SST-precipitation intraseasonal relationships in the ECMWF coupled climate reanalysis. Geophys. Res. Lett., 45, 36643672, https://doi.org/10.1029/2018GL077138.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546561, https://doi.org/10.1002/qj.2401.

    • Search Google Scholar
    • Export Citation
  • Guiavarc’h, C., J. Roberts-Jones, C. Harris, D. J. Lea, A. Ryan, and I. Ascione, 2019: Assessment of ocean analysis and forecast from an atmosphere–ocean coupled data assimilation operational system. Ocean Sci., 15, 13071326, https://doi.org/10.5194/os-15-1307-2019.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., H.-J. Song, J. Jung, and G.-H. Lim, 2016: Development of the nonstationary incremental analysis update algorithm for sequential data assimilation system. Adv. Meteor., 2016, 4305204, https://doi.org/10.1155/2016/4305204.

    • Search Google Scholar
    • Export Citation
  • Harris, I. C., P. D. Jones, and T. Osborn, 2021: CRU TS4.05: Climatic Research Unit (CRU) Time-Series (TS) version 4.05 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901 - Dec. 2020). NERC EDS Centre for Environmental Data Analysis, accessed 22 December 2024, https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681/.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 2013: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573584, https://doi.org/10.1002/qj.1991.

    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-I. Lee, D. Kim, S. D. Schubert, D. E. Waliser, and B. Tian, 2014: Representation of tropical subseasonal variability of precipitation in global reanalyses. Climate Dyn., 43, 517534, https://doi.org/10.1007/s00382-013-1890-x.

    • Search Google Scholar
    • Export Citation
  • Kim, D., H. Kim, and M.-I. Lee, 2017: Why does the MJO detour the Maritime Continent during austral summer? Geophys. Res. Lett., 44, 25792587, https://doi.org/10.1002/2017GL072643.

    • Search Google Scholar
    • Export Citation
  • Kim, H., M. A. Janiga, and K. Pegion, 2019: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophys. Res. Atmos., 124, 93149331, https://doi.org/10.1029/2019JD031139.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., L. Zhang, and W. Wang, 2013: Sea surface temperature–precipitation relationship in different reanalyses. Mon. Wea. Rev., 141, 11181123, https://doi.org/10.1175/MWR-D-12-00214.1.

    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2016: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 6578, https://doi.org/10.1002/qj.2629.

    • Search Google Scholar
    • Export Citation
  • Lea, D. J., I. Mirouze, M. J. Martin, R. R. King, A. Hines, D. Walters, and M. Thurlow, 2015: Assessing a new coupled data assimilation system based on the Met Office coupled atmosphere–land–ocean–sea ice model. Mon. Wea. Rev., 143, 46784694, https://doi.org/10.1175/MWR-D-15-0174.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149, https://doi.org/10.1175/2008MWR2459.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505513, https://doi.org/10.3402/tellusa.v34i6.10836.

    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madec, G, and the NEMO Team, 2008: NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL) No. 27, 401 pp., https://epic.awi.de/id/eprint/39698/1/NEMO_book_v6039.pdf.

  • Meehl, G. A., 1995: Global coupled general circulation models. Bull. Amer. Meteor. Soc., 76, 951957, https://doi.org/10.1175/1520-0477-76.6.951.

    • Search Google Scholar
    • Export Citation
  • Mogensen, K. S., M. A. Balmaseda, A. Weaver, M. Martin, and A. Vidard, 2009: NEMOVAR: A variational data assimilation system for the NEMO ocean model. ECMWF Newsletter, No. 120, ECMWF, Reading, United Kingdom, 17–21, https://www.ecmwf.int/sites/default/files/elibrary/2009/17483-nemovar-variational-data-assimilation-system-nemo-ocean-model.pdf.

  • Molod, A., and Coauthors, 2020: GEOS-S2S version 2: The GMAO high-resolution coupled model and assimilation system for seasonal prediction. J. Geophys. Res., 125, e2019JD031767, https://doi.org/10.1029/2019JD031767.

    • Search Google Scholar
    • Export Citation
  • Mulholland, D. P., P. Laloyaux, K. Haines, and M. A. Balmaseda, 2015: Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon. Wea. Rev., 143, 46314644, https://doi.org/10.1175/MWR-D-15-0076.1.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 19691982, https://doi.org/10.1007/s00382-013-1782-0.

    • Search Google Scholar
    • Export Citation
  • Owens, R. G., and T. D. Hewson, 2018: ECMWF forecast user guide. ECMWF, Reading, United Kingdom, 10 pp., https://doi.org/10.21957/m1cs7h.

  • Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470, https://doi.org/10.1175/BAMS-89-4-459.

    • Search Google Scholar
    • Export Citation
  • Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169ES172.

    • Search Google Scholar
    • Export Citation
  • Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 22212230, https://doi.org/10.5194/gmd-8-2221-2015.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., A. Kumar, M. Peña, and F. Vitart, 2015: Improving and promoting subseasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 96, ES49ES53, https://doi.org/10.1175/BAMS-D-14-00139.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 34833517, https://doi.org/10.1175/JCLI3812.1.

  • Skachko, S., and Coauthors, 2019: Weakly coupled atmosphere–ocean data assimilation in the Canadian global prediction system (v1). Geosci. Model Dev., 12, 50975112, https://doi.org/10.5194/gmd-12-5097-2019.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373388, https://doi.org/10.5194/gmd-6-373-2013.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2013: Development of global hourly 0.5° land surface air temperature datasets. J. Climate, 26, 76767691, https://doi.org/10.1175/JCLI-D-12-00682.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, C. J., and Coauthors, 2017: Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteor. Appl., 24, 315325, https://doi.org/10.1002/met.1654.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 15091524, https://doi.org/10.5194/gmd-8-1509-2015.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and Coauthors, 2020: Coupled data assimilation and parameter estimation in coupled ocean–atmosphere models: A review. Climate Dyn., 54, 51275144, https://doi.org/10.1007/s00382-020-05275-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 132 132 1
Full Text Views 423 423 375
PDF Downloads 373 373 321