Impact of the Pacific Meridional Mode on Hawaiian Rainfall Variability

Bo-Yi Lu Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Bo-Yi Lu in
Current site
Google Scholar
PubMed
Close
and
Pao-Shin Chu Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Pao-Shin Chu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Pacific meridional mode (PMM) features air–sea interactions within the subtropical and tropical eastern North Pacific; however, its influence on Hawaiian rainfall variability remains elusive. This study aims to elucidate PMM-related large-scale atmospheric patterns and their repercussions on island rainfall dynamics across diverse time scales. In reference to the peak PMM season in boreal spring, we delineate distinct atmospheric patterns during the antecedent winter and concurrent spring. Our analysis employs multiple linear regression and disentangles the roles of El Niño–Southern Oscillation (ENSO) and the PMM in driving rainfall variability. ENSO emerges as the primary driver of winter rainfall variability, while the PMM assumes a pivotal role in spring rainfall, particularly impacting the southern islands. During a (+) PMM phase in winter, anomalous surface westerly winds decelerate prevailing trade winds, engendering an east–west anomalous rainfall dipole pattern across the Hawaiian Islands. This, in turn, amplifies median and lower-quartile seasonal rainfall over the typically arid leeward sides of the island chain. Subsequently, in spring, a (+) PMM intensifies moisture and ascent over the tropical eastern North Pacific, precipitating extensive rainfall across the state. For disturbance-driven rainfall, a (+) PMM coincides with heightened frontal-related rainfall, whereas El Niño is associated with decreased rainfall from Kona lows, upper-level lows, and trade-wind events. Our evaluation of PMM-related daily rainfall intensity underscores spatial variations: A (−) PMM corresponds to reduced moderate daily rainfall over windward sides, potentially exacerbating drought occurrences. Conversely, leeward sides experience an increase in extreme rainfall events in both winter and spring during a (+) PMM, suggesting a heightened risk of floods.

Significance Statement

This study delves into the intricate dynamics of the Pacific meridional mode (PMM) and its profound implications for Hawaiian rainfall variability. By dissecting PMM-related atmospheric patterns across seasons, we uncover compelling insights: The (+) PMM phases in winter amplify rainfall over typically dry leeward sides, while the spring (+) PMM phases intensify moisture and precipitation across the state. Importantly, our analysis reveals regional shifts in daily rainfall intensity and disentangles the respective roles of ENSO and the PMM in driving rainfall variability across seasons and disturbance types. These findings not only deepen our understanding of regional climate dynamics but also offer valuable insights for water resource management and disaster preparedness in Hawaii and beyond.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pao-Shin Chu, chu@hawaii.edu

Abstract

The Pacific meridional mode (PMM) features air–sea interactions within the subtropical and tropical eastern North Pacific; however, its influence on Hawaiian rainfall variability remains elusive. This study aims to elucidate PMM-related large-scale atmospheric patterns and their repercussions on island rainfall dynamics across diverse time scales. In reference to the peak PMM season in boreal spring, we delineate distinct atmospheric patterns during the antecedent winter and concurrent spring. Our analysis employs multiple linear regression and disentangles the roles of El Niño–Southern Oscillation (ENSO) and the PMM in driving rainfall variability. ENSO emerges as the primary driver of winter rainfall variability, while the PMM assumes a pivotal role in spring rainfall, particularly impacting the southern islands. During a (+) PMM phase in winter, anomalous surface westerly winds decelerate prevailing trade winds, engendering an east–west anomalous rainfall dipole pattern across the Hawaiian Islands. This, in turn, amplifies median and lower-quartile seasonal rainfall over the typically arid leeward sides of the island chain. Subsequently, in spring, a (+) PMM intensifies moisture and ascent over the tropical eastern North Pacific, precipitating extensive rainfall across the state. For disturbance-driven rainfall, a (+) PMM coincides with heightened frontal-related rainfall, whereas El Niño is associated with decreased rainfall from Kona lows, upper-level lows, and trade-wind events. Our evaluation of PMM-related daily rainfall intensity underscores spatial variations: A (−) PMM corresponds to reduced moderate daily rainfall over windward sides, potentially exacerbating drought occurrences. Conversely, leeward sides experience an increase in extreme rainfall events in both winter and spring during a (+) PMM, suggesting a heightened risk of floods.

Significance Statement

This study delves into the intricate dynamics of the Pacific meridional mode (PMM) and its profound implications for Hawaiian rainfall variability. By dissecting PMM-related atmospheric patterns across seasons, we uncover compelling insights: The (+) PMM phases in winter amplify rainfall over typically dry leeward sides, while the spring (+) PMM phases intensify moisture and precipitation across the state. Importantly, our analysis reveals regional shifts in daily rainfall intensity and disentangles the respective roles of ENSO and the PMM in driving rainfall variability across seasons and disturbance types. These findings not only deepen our understanding of regional climate dynamics but also offer valuable insights for water resource management and disaster preparedness in Hawaii and beyond.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pao-Shin Chu, chu@hawaii.edu
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cai, W., and Coauthors, 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Caruso, S. J., and S. Businger, 2006: Subtropical cyclogenesis over the central North Pacific. Wea. Forecasting, 21, 193205, https://doi.org/10.1175/WAF914.1.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385, 516518, https://doi.org/10.1038/385516a0.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 1989: Hawaiian drought and the Southern Oscillation. Int. J. Climatol., 9, 619631, https://doi.org/10.1002/joc.3370090606.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 1995: Hawaii rainfall anomalies and El Niño. J. Climate, 8, 16971703, https://doi.org/10.1175/1520-0442(1995)008<1697:HRAAEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and H. Chen, 2005: Interannual and interdecadal rainfall variations in the Hawaiian Islands. J. Climate, 18, 47964813, https://doi.org/10.1175/JCLI3578.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and H. Murakami, 2022: Climate Variability and Tropical Cyclone Activity. Cambridge University Press, 320 pp.

  • Chu, P.-S., A. J. Nash, and F.-Y. Porter, 1993: Diagnostic studies of two contrasting rainfall episodes in Hawaii: Dry 1981 and wet 1982. J. Climate, 6, 14571462, https://doi.org/10.1175/1520-0442(1993)006<1457:DSOTCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., X. Zhao, Y. Ruan, and M. Grubbs, 2009: Extreme rainfall events in the Hawaiian Islands. J. Appl. Meteor. Climatol., 48, 502516, https://doi.org/10.1175/2008JAMC1829.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., Y. R. Chen, and T. A. Schroeder, 2010: Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Climate, 23, 48814900, https://doi.org/10.1175/2010JCLI3484.1.

    • Search Google Scholar
    • Export Citation
  • Elison Timm, O., S. Li, J. Liu, and D. W. Beilman, 2021: On the changing relationship between North Pacific climate variability and synoptic activity over the Hawaiian Islands. Int. J. Climatol., 41, E1566E1582, https://doi.org/10.1002/joc.6789.

    • Search Google Scholar
    • Export Citation
  • Frazier, A. G., T. W. Giambelluca, H. F. Diaz, and H. L. Needham, 2016: Comparison of geostatistical approaches to spatially interpolate month-year rainfall for the Hawaiian Islands. Int. J. Climatol., 36, 14591470, https://doi.org/10.1002/joc.4437.

    • Search Google Scholar
    • Export Citation
  • Frazier, A. G., O. E. Timm, T. W. Giambelluca, and H. F. Diaz, 2018: The influence of ENSO, PDO and PNA on secular rainfall variations in Hawai‘i. Climate Dyn., 51, 21272140, https://doi.org/10.1007/s00382-017-4003-4.

    • Search Google Scholar
    • Export Citation
  • Garza, J. A., P.-S. Chu, C. W. Norton, and T. A. Schroeder, 2012: Changes of the prevailing trade winds over the islands of Hawaii and the North Pacific. J. Geophys. Res., 117, D11109, https://doi.org/10.1029/2011JD016888.

    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., Q. Chen, A. G. Frazier, J. P. Price, Y.-L. Chen, P.-S. Chu, J. K. Eischeid, and D. M. Delparte, 2013: Online Rainfall Atlas of Hawai’i. Bull. Amer. Meteor. Soc., 94, 313316, https://doi.org/10.1175/BAMS-D-11-00228.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kodama, K., and G. M. Barnes, 1997: Heavy rain events over the South-facing slopes of Hawaii: Attendant conditions. Wea. Forecasting, 12, 347367, https://doi.org/10.1175/1520-0434(1997)012<0347:HREOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. J. Appl. Meteor., 6, 791802, https://doi.org/10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Li, Y., J. Li, W. Zhang, X. Zhao, F. Xie, and F. Zheng, 2015: Ocean dynamical processes associated with the tropical Pacific cold tongue mode. J. Geophys. Res. Oceans, 120, 64196435, https://doi.org/10.1002/2015JC010814.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–West Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • Longman, R. J., A. J. Newman, T. W. Giambelluca, and M. Lucas, 2020: Characterizing the uncertainty and assessing the value of gap-filled daily rainfall data in Hawaii. J. Appl. Meteor. Climatol., 59, 12611276, https://doi.org/10.1175/JAMC-D-20-0007.1.

    • Search Google Scholar
    • Export Citation
  • Longman, R. J., O. E. Timm, T. W. Giambelluca, and L. Kaiser, 2021: A 20-year analysis of disturbance-driven rainfall on O‘ahu, Hawai’i. Mon. Wea. Rev., 149, 17671783, https://doi.org/10.1175/MWR-D-20-0287.1.

    • Search Google Scholar
    • Export Citation
  • Longman, R. J., and Coauthors, 2024: The Hawai’i Climate Data Portal (HCDP). Bull. Amer. Meteor. Soc., 105, E1074E1083, https://doi.org/10.1175/BAMS-D-23-0188.1.

    • Search Google Scholar
    • Export Citation
  • Lu, B.-Y., P.-S. Chu, S.-H. Kim, and C. Karamperidou, 2020: Hawaiian regional climate variability during two types of El Niño. J. Climate, 33, 99299943, https://doi.org/10.1175/JCLI-D-19-0985.1.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., J. Feng, F. Jia, and D. Hu, 2022: Interdecadal change in the relationship between the El Niño-Southern Oscillation and the North/South Pacific Meridional Mode. J. Geophys. Res. Oceans, 127, e2021JC018284, https://doi.org/10.1029/2021JC018284.

    • Search Google Scholar
    • Export Citation
  • Lucas, M. P., R. J. Longman, T. W. Giambelluca, A. G. Frazier, J. Mclean, S. B. Cleveland, Y.-F. Huang, and J. Lee, 2022: Optimizing automated kriging to improve spatial interpolation of monthly rainfall over complex terrain. J. Hydrometeor., 23, 561572, https://doi.org/10.1175/JHM-D-21-0171.1.

    • Search Google Scholar
    • Export Citation
  • Luo, X., B. Wang, A. G. Frazier, and T. W. Giambelluca, 2020: Distinguishing variability regimes of Hawaiian summer rainfall: Quasi-biennial and interdecadal oscillations. Geophys. Res. Lett., 47, e2020GL091260, https://doi.org/10.1029/2020GL091260.

    • Search Google Scholar
    • Export Citation
  • Lyons, S. W., 1982: Empirical orthogonal function analysis of Hawaiian rainfall. J. Appl. Meteor., 21, 17131729, https://doi.org/10.1175/1520-0450(1982)021<1713:EOFAOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of Empirical Orthogonal Functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Connor, C. F., P.-S. Chu, P.-C. Hsu, and K. Kodama, 2015: Variability of Hawaiian winter rainfall during La Niña events since 1956. J. Climate, 28, 78097823, https://doi.org/10.1175/JCLI-D-14-00638.1.

    • Search Google Scholar
    • Export Citation
  • Palmen, E., 1949: Origin and structure of high level cyclones south of the maximum westerlies. Tellus, 1, 2231, https://doi.org/10.1111/j.2153-3490.1949.tb01925.x.

    • Search Google Scholar
    • Export Citation
  • Palmer, C. E., 1951: On high-level cyclones originating in the tropics. Eos Trans. Amer. Geophys. Union, 32, 683695, https://doi.org/10.1029/TR032i005p00683.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1962: The subtropical cyclone. J. Geophys. Res., 67, 14011411, https://doi.org/10.1029/JZ067i004p01401.

  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3957, https://doi.org/10.1002/joc.3370010106.

  • Simpson, R. H., 1952: Evolution of the kona storm a subtropical cyclone. J. Meteor., 9, 2435, https://doi.org/10.1175/1520-0469(1952)009<0024:EOTKSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tu, C.-C., and Y.-L. Chen, 2011: Favorable conditions for the development of a heavy rainfall event over Oahu during the 2006 wet period. Wea. Forecasting, 26, 280300, https://doi.org/10.1175/2010WAF2222449.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003a: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 26532667, https://doi.org/10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003b: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 5384.

  • Wilks, D. S., 2019: Statistical Methods in the Atmospheric Sciences. 4th Ed. Elsevier, 818 pp.

  • Xie, S.-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12, 6470, https://doi.org/10.1175/1520-0442(1999)012<0064:ADOAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2010: Three evolution patterns of Central‐Pacific El Niño. Geophys. Res. Lett., 37, L08706, https://doi.org/10.1029/2010GL042810.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, https://doi.org/10.1029/2012GL052483.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., J. Li, and X. Zhao, 2010: Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res., 115, C12042, https://doi.org/10.1029/2010JC006501.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., S. Chen, R. J. Greatbatch, M. Claus, and J. Xing, 2021: Role of thermocline feedback in the increasing occurrence of Central Pacific ENSO. Reg. Stud. Mar. Sci., 41, 101584, https://doi.org/10.1016/j.rsma.2020.101584.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 131 131 131
Full Text Views 1153 1153 246
PDF Downloads 593 593 124