The Pacific/North American Teleconnection Pattern and United States Climate. Part I: Regional Temperature and Precipitation Associations

Daniel J. Leathers Meteorology/Climatology Program, Department of Geography, University of Nebraska-Lincoln, Lincoln, Nebraska

Search for other papers by Daniel J. Leathers in
Current site
Google Scholar
PubMed
Close
,
Brent Yarnal Department of Geography, Earth System Science Center, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Brent Yarnal in
Current site
Google Scholar
PubMed
Close
, and
Michael A. Palecki Department of Geography, State University of New York at Buffalo, Amherst, New York

Search for other papers by Michael A. Palecki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Pacific/North American (PNA) teleconnection index, a measure of the strength and phase of the PNA teleconnection pattern, is related to the variations of the surface climate of the United States from 1947 through 1982 for the autumn, winter, and spring months when the PNA is a main mode of Northern Hemisphere midtropospheric variability. The results demonstrate that the PNA index is highly correlated with both regional temperature and precipitation. The strongest, most extensive correlations between the index and temperature are observed in winter, but large areas of the country show important associations during the spring and autumn as well. Although the centers of highest correlation migrate systematically with changes in the circumpolar vortex over the course of the annual cycle, the southeastern and northwestern parts of the United States possess consistently high index-temperature correlations.

Correlations between the PNA index and precipitation are weaker and less extensive than those for temperature, but large coherent regions of high correlations are observed across the nation. Winter and early spring exhibit the strongest relationships because spatially coherent synoptic-scale systems, related to the long-wave pattern, control precipitation. The late spring and early autumn seasons have the least extensive and weakest correlations due to the importance of less organized smaller-scale convective rainfall events.

Abstract

The Pacific/North American (PNA) teleconnection index, a measure of the strength and phase of the PNA teleconnection pattern, is related to the variations of the surface climate of the United States from 1947 through 1982 for the autumn, winter, and spring months when the PNA is a main mode of Northern Hemisphere midtropospheric variability. The results demonstrate that the PNA index is highly correlated with both regional temperature and precipitation. The strongest, most extensive correlations between the index and temperature are observed in winter, but large areas of the country show important associations during the spring and autumn as well. Although the centers of highest correlation migrate systematically with changes in the circumpolar vortex over the course of the annual cycle, the southeastern and northwestern parts of the United States possess consistently high index-temperature correlations.

Correlations between the PNA index and precipitation are weaker and less extensive than those for temperature, but large coherent regions of high correlations are observed across the nation. Winter and early spring exhibit the strongest relationships because spatially coherent synoptic-scale systems, related to the long-wave pattern, control precipitation. The late spring and early autumn seasons have the least extensive and weakest correlations due to the importance of less organized smaller-scale convective rainfall events.

Save