Interannual Variability of Wintertime Snow Cover across the Northern Hemisphere

David S. Gutzler Atmospheric and Environmental Research, Inc., Cambridge, Massachusetts

Search for other papers by David S. Gutzler in
Current site
Google Scholar
PubMed
Close
and
Richard D. Rosen Atmospheric and Environmental Research, Inc., Cambridge, Massachusetts

Search for other papers by Richard D. Rosen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Digitized maps of Northern Hemisphere snow cover derived from visible satellite imagery are examined to assess the interannual variability of snow cover in winter months for years 1972–90. The secular trend of winter snow cover over the landmasses of Eurasia and North America during this period is extremely small in December and January. A decreasing trend of somewhat larger magnitude is observed in Eurasian snow cover in February. Fluctuations of detrended interannual snow-cover anomalies averaged over the Eurasian and North American continents are positively correlated. By subdividing the continents into longitudinal sectors it is determined that this intercontinental relationship is due to high correlations between European and North American sectors. The relationship of snow-cover fluctuations to large-scale circulation anomalies is described using lime series of teleconnection pattern indices derived from monthly mean geopotential height fields. A pattern of height anomalies resembling the North Atlantic Oscillation is correlated with snow-cover anomalies in North America and Europe. The Pacific-North American teleconnection pattern is highly correlated with snow-cover anomalies in western North America but has limited influence on intercontinental snow-cover fluctuations.

Abstract

Digitized maps of Northern Hemisphere snow cover derived from visible satellite imagery are examined to assess the interannual variability of snow cover in winter months for years 1972–90. The secular trend of winter snow cover over the landmasses of Eurasia and North America during this period is extremely small in December and January. A decreasing trend of somewhat larger magnitude is observed in Eurasian snow cover in February. Fluctuations of detrended interannual snow-cover anomalies averaged over the Eurasian and North American continents are positively correlated. By subdividing the continents into longitudinal sectors it is determined that this intercontinental relationship is due to high correlations between European and North American sectors. The relationship of snow-cover fluctuations to large-scale circulation anomalies is described using lime series of teleconnection pattern indices derived from monthly mean geopotential height fields. A pattern of height anomalies resembling the North Atlantic Oscillation is correlated with snow-cover anomalies in North America and Europe. The Pacific-North American teleconnection pattern is highly correlated with snow-cover anomalies in western North America but has limited influence on intercontinental snow-cover fluctuations.

Save