All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 679 322 23
PDF Downloads 359 176 10

Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review

J. R. GarrattCSIRO Division of Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by J. R. Garratt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Aspects of the land-surface and boundary-layer treatments in some 20 or so atmospheric general circulation models (GCMS) are summarized. In only a small fraction of these have significant sensitivity studies been carried out and published. Predominantly, the sensitivity studies focus upon the parameterization of land-surface processes and specification of land-surface properties—the most important of these include albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. For example, results from numerous studies give an average decrease in continental precipitation of 1 mm day−1 in response to an average albedo increase of 0.13. Few conclusive studies have been carried out on the impact of a gross roughness-length change—the primary study included an important statistical assessment of the impact upon the mean July climate around the globe of a decreased continental roughness (by three orders of magnitude). For example, such a decrease reduced the precipitation over Amazonia by 1 to 2 mm day−1.

The inclusion of a canopy scheme in a GCM ensures the combined impacts of roughness (canopies tend to be rougher than bare soil), albedo (canopies tend to be less reflective than bare soil), and soil-moisture availability (canopies prevent the near-surface soil region from drying out and can access the deep soil moisture) upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. The results of four such studies show that replacing tropical forest with a degraded pasture results in decreased evaporation (≈ 1 mm day−1) and precipitation (1–2 mm day−1), and increased near-surface air temperatures (≈2 K).

Sensitivity studies as a whole suggest the need for a realistic surface representation in general circulation models of the atmosphere. It is not yet clear how detailed this representation needs to be, but even allowing for the importance of surface processes, the parameterization of boundary-layer and convective clouds probably represents a greater challenge to improved climate simulations. This is illustrated in the case of surface net radiation for Aniazonia, which is not well simulated and tends to be overestimated, leading to evaporation rates that are too large. Underestimates in cloudiness, cloud albedo, and clear-sky shortwave absorption, rather than in surface albedo, appear to be the main culprits.

There are three major tasks that confront the researcher so far as the development and validation of atmospheric boundary-layer (ABL) and surface schemes in GCMs are concerned:

(i) There is a need to as” critically the impact of “improved” parameterization schemes on WM simulations, taking into account the problem of natural variability and hence the statistical significance of the induced changes.

(ii) There is a need to compare GCM simulations of surface and ABL behavior (particularly regarding the diurnal cycle of surface fluxes, air temperature, and ABL depth) with observations over a range of surface types (vegetation, desert, ocean). In this context, area-average values of surface fluxes will be required to calibrate directly the ABL/land-surface scheme in the GCM.

(iii) There is a need for intercomparisons of ABL and land-surface schemes used in GCMS, both for one- dimensional stand-alone models and for GCMs that incorporate the respective schemes.

Abstract

Aspects of the land-surface and boundary-layer treatments in some 20 or so atmospheric general circulation models (GCMS) are summarized. In only a small fraction of these have significant sensitivity studies been carried out and published. Predominantly, the sensitivity studies focus upon the parameterization of land-surface processes and specification of land-surface properties—the most important of these include albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. For example, results from numerous studies give an average decrease in continental precipitation of 1 mm day−1 in response to an average albedo increase of 0.13. Few conclusive studies have been carried out on the impact of a gross roughness-length change—the primary study included an important statistical assessment of the impact upon the mean July climate around the globe of a decreased continental roughness (by three orders of magnitude). For example, such a decrease reduced the precipitation over Amazonia by 1 to 2 mm day−1.

The inclusion of a canopy scheme in a GCM ensures the combined impacts of roughness (canopies tend to be rougher than bare soil), albedo (canopies tend to be less reflective than bare soil), and soil-moisture availability (canopies prevent the near-surface soil region from drying out and can access the deep soil moisture) upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. The results of four such studies show that replacing tropical forest with a degraded pasture results in decreased evaporation (≈ 1 mm day−1) and precipitation (1–2 mm day−1), and increased near-surface air temperatures (≈2 K).

Sensitivity studies as a whole suggest the need for a realistic surface representation in general circulation models of the atmosphere. It is not yet clear how detailed this representation needs to be, but even allowing for the importance of surface processes, the parameterization of boundary-layer and convective clouds probably represents a greater challenge to improved climate simulations. This is illustrated in the case of surface net radiation for Aniazonia, which is not well simulated and tends to be overestimated, leading to evaporation rates that are too large. Underestimates in cloudiness, cloud albedo, and clear-sky shortwave absorption, rather than in surface albedo, appear to be the main culprits.

There are three major tasks that confront the researcher so far as the development and validation of atmospheric boundary-layer (ABL) and surface schemes in GCMs are concerned:

(i) There is a need to as” critically the impact of “improved” parameterization schemes on WM simulations, taking into account the problem of natural variability and hence the statistical significance of the induced changes.

(ii) There is a need to compare GCM simulations of surface and ABL behavior (particularly regarding the diurnal cycle of surface fluxes, air temperature, and ABL depth) with observations over a range of surface types (vegetation, desert, ocean). In this context, area-average values of surface fluxes will be required to calibrate directly the ABL/land-surface scheme in the GCM.

(iii) There is a need for intercomparisons of ABL and land-surface schemes used in GCMS, both for one- dimensional stand-alone models and for GCMs that incorporate the respective schemes.

Save