Association between Winter Precipitation and Water Level Fluctuations in the Great Lakes and Atmospheric Circulation Patterns

Sergei N. Rodionov National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Sergei N. Rodionov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric precipitation in the Great Lakes basin, as a major mediating variable between atmospheric circulation and lake levels, is analyzed relative to both. The effect of cumulative winter precipitation on lake levels varies from lake to lake and depends on both the state of the lake level itself and air temperature. For periods with a quasi-stable temperature regime, the correlation coefficient between winter precipitation and changes in lake levels from November to spring months reaches 0.8. An analysis of composite maps of mean winter 700-mb heights and sea level pressure for the years with well-above and well-below normal precipitation in the lower Great Lakes basin (Lakes Michigan-Huron, St. Clair, Erie, and Ontario) has shown that changes in precipitation are associated with the wave train structure in the lower and midtroposphere that is similar to the Pacific/North American (PNA) teleconnection pattern. During the positive phase of the PNA-like pattern, when the upper-atmospheric ridge/trough system is amplified, cyclones passing over the Great Lakes basin are frequently of Alberta (Canada) origin and carry relatively small amounts of precipitation. As a result, take levels tend to decline. On the contrary, during the negative phase of the pattern when the atmospheric circulation is more zonal, the main storm track is oriented from the southwest to the northeast and cyclones bring enough precipitation to induce a rise in lake levels. The effect of the position of the upper-atmospheric trough over the cast coast of North America on the precipitation regime in the Great Lakes basin is also demonstrated.

Abstract

Atmospheric precipitation in the Great Lakes basin, as a major mediating variable between atmospheric circulation and lake levels, is analyzed relative to both. The effect of cumulative winter precipitation on lake levels varies from lake to lake and depends on both the state of the lake level itself and air temperature. For periods with a quasi-stable temperature regime, the correlation coefficient between winter precipitation and changes in lake levels from November to spring months reaches 0.8. An analysis of composite maps of mean winter 700-mb heights and sea level pressure for the years with well-above and well-below normal precipitation in the lower Great Lakes basin (Lakes Michigan-Huron, St. Clair, Erie, and Ontario) has shown that changes in precipitation are associated with the wave train structure in the lower and midtroposphere that is similar to the Pacific/North American (PNA) teleconnection pattern. During the positive phase of the PNA-like pattern, when the upper-atmospheric ridge/trough system is amplified, cyclones passing over the Great Lakes basin are frequently of Alberta (Canada) origin and carry relatively small amounts of precipitation. As a result, take levels tend to decline. On the contrary, during the negative phase of the pattern when the atmospheric circulation is more zonal, the main storm track is oriented from the southwest to the northeast and cyclones bring enough precipitation to induce a rise in lake levels. The effect of the position of the upper-atmospheric trough over the cast coast of North America on the precipitation regime in the Great Lakes basin is also demonstrated.

Save