GCM Simulations of the Climate of 6 kyr BP: Mean Changes and Interdecadal Variability

C. D. Hewitt Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, United Kingdom

Search for other papers by C. D. Hewitt in
Current site
Google Scholar
PubMed
Close
and
J. F. B. Mitchell Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, United Kingdom

Search for other papers by J. F. B. Mitchell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simulation of the climate for 6 kyr BP, using the Hadley Centre's atmospheric GCM with prescribed SSTs is described. The control simulation successfully reproduces the large-scale features of the present-day climate and has realistic atmospheric interannual variability. The anomaly simulation for 6 kyr BP produces a climate with an enhanced Northern Hemisphere seasonal cycle, and, in particular, a strengthened African-Asian summer monsoon. Integrated over the full annual cycle, the land surface of the southern Tropics dries while the northern Tropics get wetter, and the high northern latitudes also dry. The model simulates large regional interdecadal differences in the response at 6 kyr BP highlighting the need to allow for and account for variability on long, that is, at least decadal, timescales. The authors describe the consequences of part of the experimental design employed, whereby the SSTs for the 6 kyr BP simulation are the same as in the control as recommended by the Paleoclimate Modelling Intercomparison Project, in particular, the potential importance of ocean and sea ice feedbacks.

Abstract

A simulation of the climate for 6 kyr BP, using the Hadley Centre's atmospheric GCM with prescribed SSTs is described. The control simulation successfully reproduces the large-scale features of the present-day climate and has realistic atmospheric interannual variability. The anomaly simulation for 6 kyr BP produces a climate with an enhanced Northern Hemisphere seasonal cycle, and, in particular, a strengthened African-Asian summer monsoon. Integrated over the full annual cycle, the land surface of the southern Tropics dries while the northern Tropics get wetter, and the high northern latitudes also dry. The model simulates large regional interdecadal differences in the response at 6 kyr BP highlighting the need to allow for and account for variability on long, that is, at least decadal, timescales. The authors describe the consequences of part of the experimental design employed, whereby the SSTs for the 6 kyr BP simulation are the same as in the control as recommended by the Paleoclimate Modelling Intercomparison Project, in particular, the potential importance of ocean and sea ice feedbacks.

Save