Quantifying the Role of Ocean Dynamics in Ocean Mixed-Layer Temperature Variability

View More View Less
  • 1 Department of Atmospheric Sciences, Colorado State University, Ft. Collins, Colorado, USA
© Get Permissions
Restricted access

Abstract

Understanding the role of the ocean in climate variability requires first understanding the role of ocean dynamics in ocean mixed layer and thus sea surface temperature variability. However, key aspects of the spatially and temporally varying contributions of ocean dynamics to such variability remain unclear. Here, the authors quantify the contributions of ocean-dynamical processes to mixed layer temperature variability on monthly to multiannual timescales across the globe. To do so, they use two complementary but distinct methods: 1) a method in which ocean heat transport is estimated directly from a state-of-the-art ocean state estimate spanning 1992-2015; and 2) a method in which it is estimated indirectly from observations between 1980-2017 and the energy budget of the mixed layer. The results extend previous studies by providing quantitative estimates of the role of ocean dynamics in mixed layer temperature variability throughout the globe, across a range of timescales, in a range of available measurements, and using two different methods. Consistent with previous studies, both methods indicate that the ocean-dynamical contribution to mixed layer temperature variance is largest over western boundary currents, their eastward extensions, and regions of equatorial upwelling. In contrast to previous studies, the results suggest that ocean dynamics reduce the variance of Northern Hemisphere mixed layer temperatures on timescales longer than a few years. Hence, in the global-mean, the fractional contribution of ocean dynamics to mixed layer temperature variability decreases at increasingly low-frequencies. Differences in the magnitude of the ocean-dynamical contribution based on the two methods highlight the critical need for improved and continuous observations of the ocean mixed layer.

Corresponding author: Casey Patrizio, casey.patrizio@colostate.edu

Abstract

Understanding the role of the ocean in climate variability requires first understanding the role of ocean dynamics in ocean mixed layer and thus sea surface temperature variability. However, key aspects of the spatially and temporally varying contributions of ocean dynamics to such variability remain unclear. Here, the authors quantify the contributions of ocean-dynamical processes to mixed layer temperature variability on monthly to multiannual timescales across the globe. To do so, they use two complementary but distinct methods: 1) a method in which ocean heat transport is estimated directly from a state-of-the-art ocean state estimate spanning 1992-2015; and 2) a method in which it is estimated indirectly from observations between 1980-2017 and the energy budget of the mixed layer. The results extend previous studies by providing quantitative estimates of the role of ocean dynamics in mixed layer temperature variability throughout the globe, across a range of timescales, in a range of available measurements, and using two different methods. Consistent with previous studies, both methods indicate that the ocean-dynamical contribution to mixed layer temperature variance is largest over western boundary currents, their eastward extensions, and regions of equatorial upwelling. In contrast to previous studies, the results suggest that ocean dynamics reduce the variance of Northern Hemisphere mixed layer temperatures on timescales longer than a few years. Hence, in the global-mean, the fractional contribution of ocean dynamics to mixed layer temperature variability decreases at increasingly low-frequencies. Differences in the magnitude of the ocean-dynamical contribution based on the two methods highlight the critical need for improved and continuous observations of the ocean mixed layer.

Corresponding author: Casey Patrizio, casey.patrizio@colostate.edu
Save