The shallowing surface temperature inversions in the Arctic

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China 100081
  • 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 100049
  • 3 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China 100875
© Get Permissions
Restricted access

Abstract

Temperature inversion plays an important role in various physical processes by affecting the atmospheric stability, regulating the development of clouds and fog, and controlling the transport of heat and moisture fluxes. In the past few decades, previous studies have analyzed the spatiotemporal variability of Arctic inversions, but few studies have investigated changes in temperature inversions. In this study, the changes in the depth of Arctic inversions in the mid-21st century are projected based on a 30-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. The ERA-Interim, JRA-55, and NCEP-NCAR reanalyses were employed to verify the model results. The CESM-LE can adequately reproduce the spatial distribution and trends of present-day inversion depth in the Arctic, and the simulation is better in winter. The mean inversion depth in the CESM-LE is slightly underestimated, and the discrepancy is less than 11 hPa within a reasonable range. The model results show that during the mid-21st century, the inversion depth will strongly decrease in autumn and slightly decrease in winter. The shallowing of inversion is most obvious over the Arctic Ocean, and the maximum decrease is over 65 hPa in the Pacific sector in autumn. In contrast, the largest decrease in the inversion depth, which is more than 45 hPa, occurs over the Barents Sea in winter. Moreover, the area where the inversion shallows is consistent with the area where the sea ice is retreating, indicating that the inversion depth over the Arctic Ocean in autumn and winter is likely regulated by the sea ice extent through modulating surface heat fluxes.

Corresponding author: Dr. Minghu Ding, Chinese Academy of Meteorological Sciences, Beijing 100081, China E-mail:dingminghu@foxmail.com

Abstract

Temperature inversion plays an important role in various physical processes by affecting the atmospheric stability, regulating the development of clouds and fog, and controlling the transport of heat and moisture fluxes. In the past few decades, previous studies have analyzed the spatiotemporal variability of Arctic inversions, but few studies have investigated changes in temperature inversions. In this study, the changes in the depth of Arctic inversions in the mid-21st century are projected based on a 30-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. The ERA-Interim, JRA-55, and NCEP-NCAR reanalyses were employed to verify the model results. The CESM-LE can adequately reproduce the spatial distribution and trends of present-day inversion depth in the Arctic, and the simulation is better in winter. The mean inversion depth in the CESM-LE is slightly underestimated, and the discrepancy is less than 11 hPa within a reasonable range. The model results show that during the mid-21st century, the inversion depth will strongly decrease in autumn and slightly decrease in winter. The shallowing of inversion is most obvious over the Arctic Ocean, and the maximum decrease is over 65 hPa in the Pacific sector in autumn. In contrast, the largest decrease in the inversion depth, which is more than 45 hPa, occurs over the Barents Sea in winter. Moreover, the area where the inversion shallows is consistent with the area where the sea ice is retreating, indicating that the inversion depth over the Arctic Ocean in autumn and winter is likely regulated by the sea ice extent through modulating surface heat fluxes.

Corresponding author: Dr. Minghu Ding, Chinese Academy of Meteorological Sciences, Beijing 100081, China E-mail:dingminghu@foxmail.com
Save