• Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and J.-W. Kim, 2017: Role of nonlinear ocean dynamic response to wind on the asymmetrical transition of El Niño and La Niña. Geophys. Res. Lett., 44, 393400, https://doi.org/10.1002/2016GL071971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballester, J., D. Petrova, S. Bordoni, B. Cash, M. García-Díez, and X. Rodó, 2016: Sensitivity of El Niño intensity and timing to preceding subsurface heat magnitude. Sci. Rep., 6, 36344, https://doi.org/10.1038/srep36344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, https://doi.org/10.1175/BAMS-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry, and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., B. P. Kirtman, and K. Pegion, 2020: Evolution of the North American multi-model ensemble. Geophys. Res. Lett., 47, e2020GL087408, https://doi.org/10.1029/2020GL087408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the Global Ocean Data Assimilation System at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3, http://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm.

  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and et al. , 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and et al. , 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Equatorial Pacific easterly wind surges and the onset of La Niña events. J. Climate, 28, 776792, https://doi.org/10.1175/JCLI-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate, 26, 94629476, https://doi.org/10.1175/JCLI-D-13-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2016: Forecast comparison based on random walks. Mon. Wea. Rev., 144, 615626, https://doi.org/10.1175/MWR-D-15-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diebold, F. X., and R. S. Mariano, 1995: Comparing predictive accuracy. J. Bus. Econ. Stat., 13, 253263.

  • DiNezio, P. N., C. Deser, Y. M. Okumura, and A. Karspeck, 2017a: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn., 49, 42374261, https://doi.org/10.1007/s00382-017-3575-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and et al. , 2017b: A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophys. Res. Lett., 44, 11 62411 635, https://doi.org/10.1002/2017GL074904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, S. W. and J. Y. Yu, 2020: Contrasting transition complexity between El Niño and La Niña: Observations and CMIP5/6 models. Geophys. Res. Lett., 47, e2020GL088926, https://doi.org/10.1029/2020GL088926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., S. Dwivedi, F. Kucharski, F. Molteni, and S. M. Griffies, 2014: On Pacific subtropical cell variability over the second half of the twentieth century. J. Climate, 27, 71027112, https://doi.org/10.1175/JCLI-D-13-00707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2002: The response of the coupled tropical ocean–atmosphere to westerly wind bursts. Quart. J. Roy. Meteor. Soc., 128 (579), 123, https://doi.org/10.1002/qj.200212857901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 13811401, https://doi.org/10.1007/s00382-014-2126-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, https://doi.org/10.1126/science.275.5301.805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, L.-C., LinHo, and F.-F. Jin, 2014: A Southern Hemisphere booster of super El Niño. Geophys. Res. Lett., 41, 21422149, https://doi.org/10.1002/2014GL059370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., I. Ueki, and K. Hanawa, 2012: Breakdown of ENSO predictors in the 2000s: Decadal changes of recharge/discharge–SST phase relation and atmospheric intraseasonal forcing. Geophys. Res. Lett., 39, L10707, https://doi.org/10.1029/2012GL051740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, https://doi.org/10.1073/pnas.1514182113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, M. L’Heureux, M. J. McPhaden, and J.-Y. Yu, 2020: The interdecadal shift of ENSO properties in 1999/2000: A review. J. Climate, 33, 44414462, https://doi.org/10.1175/JCLI-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Lengaigne, J. Vialard, I. Suresh, and Y. Planton, 2019: On the physical interpretation of the lead relation between warm water volume and the El Niño Southern Oscillation. Climate Dyn., 52, 29232942, https://doi.org/10.1007/s00382-018-4313-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and et al. , 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, https://doi.org/10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., M. J. McPhaden, and E. Firing, 2001: Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr., 31, 839849, https://doi.org/10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Kim, S.-B., T. Lee, and I. Fukumori, 2007: Mechanisms controlling the interannual variations of mixed layer temperature averaged over the Niño-3 region. J. Climate, 20, 38223843, https://doi.org/10.1175/JCLI4206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and et al. , 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary Jr., and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26, 17431746, https://doi.org/10.1029/1999GL900352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL CM2.1 coupled GCM. J. Climate, 23, 12261239, https://doi.org/10.1175/2009JCLI3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, Y. Xue, and D. Behringer, 2015: An analysis of the temporal evaluation of ENSO prediction skill in the context of equatorial Pacific Ocean observing system. Mon. Wea. Rev., 143, 32043213, https://doi.org/10.1175/MWR-D-15-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2013: The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 31893194, https://doi.org/10.1002/grl.50571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and et al. , 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14 37514 393, https://doi.org/10.1029/97JC03413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. K., and G. T. Csanady, 1999: Warm water formation and escape in the upper tropical Atlantic Ocean. 2. A numerical model study. J. Geophys. Res., 104, 29 57329 590, https://doi.org/10.1029/1999JC900078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., I. Fukumori, and B. Tang, 2004: Temperature advection: Internal versus external processes. J. Phys. Oceanogr., 34, 19361944, https://doi.org/10.1175/1520-0485(2004)034<1936:TAIVEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp and 17 microfiche.

  • L’Heureux, M. L., 2018: Overview of the 2017–18 La Niña and El Niño watch in mid-2018. 43rd NOAA Annual Climate Diagnostics and Prediction Workshop, Santa Barbara, CA, https://doi.org/10.25923/ae2c-v522.

    • Crossref
    • Export Citation
  • Liu, Z., 1994: A simple model of the mass exchange between the subtropical and tropical ocean. J. Phys. Oceanogr., 24, 11531165, https://doi.org/10.1175/1520-0485(1994)024<1153:ASMOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., and B. Kirtman, 2014: WWBs, ENSO predictability, the spring barrier and extreme events. J. Geophys. Res. Atmos., 119, 10 11410 138, https://doi.org/10.1002/2014JD021908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, P., J. P. McCreary, and B. A. Klinger, 1998: Meridional circulation cells and the source waters of the Pacific Equatorial Undercurrent. J. Phys. Oceanogr., 28, 6284, https://doi.org/10.1175/1520-0485(1998)028<0062:MCCATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Q., Z. Ruan, D. P. Wang, D. Chen, and Q. Wu, 2017: Zonal transport from the western boundary and its role in warm water volume changes during ENSO. J. Phys. Oceanogr., 47, 211225, https://doi.org/10.1175/JPO-D-16-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., G. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep., 7, 2276, https://doi.org/10.1038/s41598-017-01479-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and Z. Yu, 1992: Equatorial dynamics in a 2 1/2-layer model. Prog. Oceanogr., 29, 61132, https://doi.org/10.1016/0079-6611(92)90003-I.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, https://doi.org/10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, https://doi.org/10.1029/2003GL016872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997-98 El Niño. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603608, https://doi.org/10.1038/415603a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an intriguing concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., A. Santoso, and W. Cai, 2020: El Niño Southern Oscillation in a Changing Climate. Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 528 pp.

    • Crossref
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neske, S., and S. McGregor, 2018: Understanding the warm water volume precursor of ENSO events and its interdecadal variation. Geophys. Res. Lett., 45, 15771585, https://doi.org/10.1002/2017GL076439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neske, S., S. McGregor, M. Zeller, and D. Dommenget, 2021: Wind spatial structure triggers ENSO’s oceanic warm water volume changes. J. Climate, 34, 19851999, https://doi.org/10.1175/JCLI-D-20-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829, https://doi.org/10.1175/2011JCLI3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paek, H., J.-Y. Yu, and C. Qian, 2017: Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett., 44, 18481856, https://doi.org/10.1002/2016GL071515.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., S.-I. An, J.-S. Kug, Y.-M. Yang, T. Li, and H.-S. Jo, 2020: Mid-latitude leading double-dip La Niña. Int. J. Climatol., 41, E1353E1370, https://doi.org/10.1002/joc.6772.

    • Search Google Scholar
    • Export Citation
  • Planton, Y., J. Vialard, E. Guilyardi, M. Lengaigne, and T. Izumo, 2018: Western Pacific oceanic heat content: A better predictor of La Niña than of El Niño. Geophys. Res. Lett., 45, 98249833, https://doi.org/10.1029/2018GL079341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., and et al. , 2019: Influence of westerly wind events stochasticity on El Niño amplitude: The case of 2014 vs. 2015. Climate Dyn., 52, 74357454, https://doi.org/10.1007/s00382-017-3938-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 65066523, https://doi.org/10.1175/JCLI-D-12-00601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. A. Cane, 1983: On equatorial dynamics, mixed layer physics, and sea surface temperature. J. Phys. Oceanogr., 13, 917935, https://doi.org/10.1175/1520-0485(1983)013<0917:OEDMLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., J. P. McCreary, and G. C. Johnson, 2004: Shallow overturning circulations of the tropical–subtropical oceans. Earth’s Climate: The Ocean–Atmosphere Interaction. Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 261–304.

    • Crossref
    • Export Citation
  • Su, J., B. Xiang, B. Wang, and T. Li, 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 90589064, https://doi.org/10.1002/2014GL062380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., Y. Fujii, T. Yasuda, N. Usui, T. Iwao, T. Kuragano, and M. Kamachi, 2013: Improved analysis of seasonal-interannual fields using a global ocean data assimilation system. Theor. Appl. Mech. Japan, 61, 3148, https://doi.org/10.11345/nctam.61.31.

    • Search Google Scholar
    • Export Citation
  • Vernieres, G., C. Keppenne, M. M. Rienecker, J. Jacob, and R. Kovach, 2012: The GEOS-ODAS: Description and evaluation. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2012-104606, Vol. 30, 60 pp.

  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Y. Lu, F. Wang, and R. H. Zhang, 2017: Surface current in “hotspot” serves as a new and effective precursor for El Niño prediction. Sci. Rep., 7, 166, https://doi.org/10.1038/s41598-017-00244-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950969, https://doi.org/10.1175/2010WAF2222345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, C., P. Chang, and R. Saravanan, 2010: Effect of Atlantic meridional overturning circulation changes on tropical Atlantic sea surface temperature variability: A 2 1/2-layer reduced-gravity ocean model study. J. Climate, 23, 312332, https://doi.org/10.1175/2009JCLI3042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, C., A. Kumar, Y. Xue, and M. J. McPhaden, 2014: Changes in tropical Pacific thermocline depth and their relationship to ENSO after 1999. J. Climate, 27, 72307249, https://doi.org/10.1175/JCLI-D-13-00518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., Y. M. Okumura, and P. N. DiNezio, 2019: What controls the duration of El Niño and La Niña events? J. Climate, 32, 59415965, https://doi.org/10.1175/JCLI-D-18-0681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. Chen, A. Kumar, Z.-Z. Hu, and W. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Climate, 26, 53585378, https://doi.org/10.1175/JCLI-D-12-00600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and et al. , 2017: A real-time ocean reanalyses intercomparison project in the context of tropical Pacific observing system and ENSO monitoring. Climate Dyn., 49, 36473672, https://doi.org/10.1007/s00382-017-3535-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., O. Alves, and P. R. Oke, 2011: An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev., 139, 786808, https://doi.org/10.1175/2010MWR3419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., and J. C. Furtado, 2017: The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys. Res. Lett., 44, 74387446, https://doi.org/10.1002/2017GL073475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2010: Three evolution patterns of central-Pacific El Niño. Geophys. Res. Lett., 37, L08706, https://doi.org/10.1029/2010GL042810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S.-W. Fang, 2018: The distinct contributions of the seasonal footprinting and charged-discharged mechanisms to ENSO complexity. Geophys. Res. Lett., 45, 66116618, https://doi.org/10.1029/2018GL077664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. J. Climate, 23, 28692884, https://doi.org/10.1175/2010JCLI3171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1989: Ocean heat content variability and El Niño cycles. J. Phys. Oceanogr., 19, 475486, https://doi.org/10.1175/1520-0485(1989)019<0475:OHCVAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15, 24292445, https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., F. Zheng, J. Zhu, and Z. Wang, 2013: A successful real-time forecast of the 2010–11 La Niña event. Sci. Rep., 3, 1108, https://doi.org/10.1038/srep01108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and M. J. McPhaden, 2010: Surface layer heat balance in the eastern equatorial Pacific Ocean on interannual time scales: Influence of local versus remote wind forcing. J. Climate, 23, 43754394, https://doi.org/10.1175/2010JCLI3469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, K. Mogensen, and S. Tietsche, 2018: OCEAN5: The ECMWF ocean reanalysis system and its real-time analysis component. ECMWF Tech. Memo. 823, 44 pp., https://doi.org/https://doi.org/10.21957/la2v0442.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 87 87 87
Full Text Views 13 13 13
PDF Downloads 17 17 17

The Importance of Central Pacific Meridional Heat Advection to the Development of ENSO

View More View Less
  • 1 a Climate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland
  • | 2 b Office of Science and Technology Integration, NWS/NOAA, Silver Spring, Maryland
  • | 3 c Rosenstiel School of Marine and Atmospheric Science/Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
© Get Permissions
Restricted access

ABSTRACT

The relationship between the warm water volume (WWV) ENSO precursor and ENSO SST weakened substantially after ~2000, coinciding with a degradation in dynamical model ENSO prediction skill. It is important to understand the drivers of the equatorial thermocline temperature variations and their linkage to ENSO onsets. In this study, a set of ocean reanalyses is employed to assess factors responsible for the variation of the equatorial Pacific Ocean thermocline during 1982–2019. Off-equatorial thermocline temperature anomalies carried equatorward by the mean meridional currents associated with Pacific tropical cells are shown to play an important role in modulating the central equatorial thermocline variations, which is rarely discussed in the literature. Further, ENSO events are delineated into two groups based on precursor mechanisms: the western equatorial Pacific type (WEP) ENSO, when the central equatorial thermocline is mainly influenced by the zonal propagation of anomalies from the western Pacific, and the off-equatorial central Pacific (OCP) ENSO, when off-equatorial central thermocline anomalies play the primary role. WWV is found to precede all WEP ENSO events by 6–9 months, while the correlation is substantially lower for OCP ENSO events. In contrast, the central tropical Pacific (CTP) precursor, which includes off-equatorial thermocline signals, has a very robust lead correlation with the OCP ENSO. Most OCP ENSO events are found to follow the same ENSO conditions, and the number of OCP ENSO events increases substantially since the start of the twenty-first century. These results highlight the importance of monitoring off-equatorial subsurface preconditions for ENSO prediction and to understand multiyear ENSO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Caihong Wen, caihong.wen@noaa.gov

ABSTRACT

The relationship between the warm water volume (WWV) ENSO precursor and ENSO SST weakened substantially after ~2000, coinciding with a degradation in dynamical model ENSO prediction skill. It is important to understand the drivers of the equatorial thermocline temperature variations and their linkage to ENSO onsets. In this study, a set of ocean reanalyses is employed to assess factors responsible for the variation of the equatorial Pacific Ocean thermocline during 1982–2019. Off-equatorial thermocline temperature anomalies carried equatorward by the mean meridional currents associated with Pacific tropical cells are shown to play an important role in modulating the central equatorial thermocline variations, which is rarely discussed in the literature. Further, ENSO events are delineated into two groups based on precursor mechanisms: the western equatorial Pacific type (WEP) ENSO, when the central equatorial thermocline is mainly influenced by the zonal propagation of anomalies from the western Pacific, and the off-equatorial central Pacific (OCP) ENSO, when off-equatorial central thermocline anomalies play the primary role. WWV is found to precede all WEP ENSO events by 6–9 months, while the correlation is substantially lower for OCP ENSO events. In contrast, the central tropical Pacific (CTP) precursor, which includes off-equatorial thermocline signals, has a very robust lead correlation with the OCP ENSO. Most OCP ENSO events are found to follow the same ENSO conditions, and the number of OCP ENSO events increases substantially since the start of the twenty-first century. These results highlight the importance of monitoring off-equatorial subsurface preconditions for ENSO prediction and to understand multiyear ENSO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Caihong Wen, caihong.wen@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 159.99 KB)
Save