Analysis of the Atmospheric Water Cycle for the Laurentian Great Lakes Region using CMIP6 models

View More View Less
  • 1 Department of Climate and Space Sciences and Engineering, University of Michigan Ann Arbor
© Get Permissions
Restricted access

Abstract

This study evaluates the historical climatology and future changes of the atmospheric water cycle for the Laurentian Great Lakes region using 15 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. While the models have unique seasonal characteristics in the historical (1981 – 2010) simulations, common patterns emerge by the mid-century SSP2-4.5 scenario (2041 – 2070), including a prevalent shift in the precipitation seasonal cycle with summer drying and wetter winter-spring months, and a ubiquitous increase in the magnitudes of convective precipitation, evapotranspiration, and moisture inflow into the region. The seasonal cycle of moisture flux convergence is amplified (i.e., the magnitude of winter convergence and summer divergence increases), which is the primary driver of future total precipitation changes. Precipitation recycling ratio is also projected to decline in summer and increase in winter by the mid-century, signifying a larger contribution of the regional moisture (via evapotranspiration) to total precipitation in the colder months. Many models (6/15) do not include representation of the Great Lakes, while others (4/15) have major inconsistencies in how the lakes are simulated both in terms of spatial representation and treatment of lake processes. In models with some lake presence, contribution of lake grid cells to the regional evapotranspiration magnitude can be more than 50% in winter. In future, winter months have a larger increase in evaporation over water surfaces than the surrounding land, which corroborates past findings of sensitivity of deep lakes to climate warming and highlights the importance of lake representation in these models for reliable regional hydroclimatic assessments.

Corresponding author: Samar Minallah ( minallah@umich.edu)

Abstract

This study evaluates the historical climatology and future changes of the atmospheric water cycle for the Laurentian Great Lakes region using 15 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. While the models have unique seasonal characteristics in the historical (1981 – 2010) simulations, common patterns emerge by the mid-century SSP2-4.5 scenario (2041 – 2070), including a prevalent shift in the precipitation seasonal cycle with summer drying and wetter winter-spring months, and a ubiquitous increase in the magnitudes of convective precipitation, evapotranspiration, and moisture inflow into the region. The seasonal cycle of moisture flux convergence is amplified (i.e., the magnitude of winter convergence and summer divergence increases), which is the primary driver of future total precipitation changes. Precipitation recycling ratio is also projected to decline in summer and increase in winter by the mid-century, signifying a larger contribution of the regional moisture (via evapotranspiration) to total precipitation in the colder months. Many models (6/15) do not include representation of the Great Lakes, while others (4/15) have major inconsistencies in how the lakes are simulated both in terms of spatial representation and treatment of lake processes. In models with some lake presence, contribution of lake grid cells to the regional evapotranspiration magnitude can be more than 50% in winter. In future, winter months have a larger increase in evaporation over water surfaces than the surrounding land, which corroborates past findings of sensitivity of deep lakes to climate warming and highlights the importance of lake representation in these models for reliable regional hydroclimatic assessments.

Corresponding author: Samar Minallah ( minallah@umich.edu)
Save