Simulation and Projection of Summer Convective Afternoon Rainfall Activities over Southeast Asia in CMIP6 Models

View More View Less
  • 1 Department of Earth Sciences, National Taiwan Normal University, Taipei 11677, Taiwan
  • 2 College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
© Get Permissions
Restricted access

Abstract

Convective afternoon rainfall (CAR) events, which tend to generate a local rainfall typically in the afternoon, are among the most frequently observed local weather patterns over Southeast Asia during summer. Using satellite precipitation estimations as an observational base for model evaluation, this study examines the applicability of ten global climate models provided by the sixth phase of the Coupled Model Intercomparison Project (CMIP6) in simulating the CAR activities over Southeast Asia. Analyses also focus on exploring the characteristics and maintenance mechanisms of related projections of CAR activities in the future. Our analyses of the historical simulation indicate that EC-Earth3 and EC-Earth3-Veg are the two best models for simulating CAR activities (including amount, frequency, and intensity) over Southeast Asia. Analyses also demonstrate that EC-Earth3 and EC-Earth3-Veg outperform their earlier version (i.e., EC-Earth) in CMIP5 owing to the increase in its spatial resolution in CMIP6. For future projections, our examinations of the differences in CAR activities between the future (2071–2100, under the ssp858 run) and the present (1985–2014, under historical run) indicate that CAR events will become fewer but more intense over most land areas of Southeast Asia. Possible causes of the projected increase (decrease) in CAR intensity (frequency) are attributed to the projected increase (decrease) in the local atmospheric humidity (sea breeze convergence and daytime thermal instability). These findings provide insight into how the local weather/climate over Southeast Asia is likely to change under global warming.

Corresponding author: Wan-Ru Huang, wrhuang@ntnu.edu.tw

Abstract

Convective afternoon rainfall (CAR) events, which tend to generate a local rainfall typically in the afternoon, are among the most frequently observed local weather patterns over Southeast Asia during summer. Using satellite precipitation estimations as an observational base for model evaluation, this study examines the applicability of ten global climate models provided by the sixth phase of the Coupled Model Intercomparison Project (CMIP6) in simulating the CAR activities over Southeast Asia. Analyses also focus on exploring the characteristics and maintenance mechanisms of related projections of CAR activities in the future. Our analyses of the historical simulation indicate that EC-Earth3 and EC-Earth3-Veg are the two best models for simulating CAR activities (including amount, frequency, and intensity) over Southeast Asia. Analyses also demonstrate that EC-Earth3 and EC-Earth3-Veg outperform their earlier version (i.e., EC-Earth) in CMIP5 owing to the increase in its spatial resolution in CMIP6. For future projections, our examinations of the differences in CAR activities between the future (2071–2100, under the ssp858 run) and the present (1985–2014, under historical run) indicate that CAR events will become fewer but more intense over most land areas of Southeast Asia. Possible causes of the projected increase (decrease) in CAR intensity (frequency) are attributed to the projected increase (decrease) in the local atmospheric humidity (sea breeze convergence and daytime thermal instability). These findings provide insight into how the local weather/climate over Southeast Asia is likely to change under global warming.

Corresponding author: Wan-Ru Huang, wrhuang@ntnu.edu.tw
Save