• Biastoch, A. C., J. Lutjeharms, C. W. Böning, and M. Scheinert, 2008: Mesoscale perturbations control inter-ocean exchange south of Africa. Geophys. Res. Lett., 35, L20602, https://doi.org/10.1029/2008GL035132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of mid–latitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, and F. O. Bryan, 2020: The global sink of available potential energy by mesoscale air–sea interaction. J. Adv. Model. Earth Syst., 12, e2020MS002118, https://doi.org/10.1029/2020MS002118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, https://doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. Thompson, J. Patoux, K. A. Kelly, and S. Dickinson, 2010: The signature of midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 11601174, https://doi.org/10.1175/2009JCLI3064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, https://doi.org/10.1175/MWR-D-11-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., E. Dunn-Sigouin, and S. Pfahl, 2017a: The relationship between extratropical cyclone steering and blocking along the North American east coast. Geophys. Res. Lett., 44, 11 97611 984, https://doi.org/10.1002/2017GL075941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., Y. O. Kwon, S. Ko, R. J. Small, and R. Msadek, 2017b: Spatial patterns and intensity of the surface storm tracks in CMIP5 models. J. Climate, 30, 49654981, https://doi.org/10.1175/JCLI-D-16-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, M., E. Rodríguez, and D. B. Chelton, 2016: Winds and currents mission: Ability to observe mesoscale AIR/SEA coupling. 2016 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Beijing, China, IEEE, 7392–7395, https://doi.org/10.1109/IGARSS.2016.7730928.

    • Crossref
    • Export Citation
  • Braby, L., B. Backeberg, M. Krug, and C. Reason, 2020: Quantifying the impact of wind-current feedback on mesoscale variability in forced simulation experiments of the Agulhas Current using an eddy-tracking algorithm. J. Geophys. Res. Oceans, 125, e2019JC015365, https://doi.org/10.1029/2019JC015365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branscome, L. E., W. J. Gutowski, and D. A. Stewart, 1989: Effects of surface fluxes on the nonlinear development of baroclinic waves. J. Geophys. Res., 46, 460475, https://doi.org/10.1175/1520-0469(1989)046<0460:EOSFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and H. Seo, 2016: Continental shelf baroclinic instability. Part II: Oscillating wind forcing. J. Phys. Oceanogr., 46, 569582, https://doi.org/10.1175/JPO-D-15-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., S. Yang, H. M. van den Dool, and V. E. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus, 59A, 127140, https://doi.org/10.1111/j.1600-0870.2006.00213.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J.A., and B. S. Giese, 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Olanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 2003: The accuracies of smoothed sea surface height fields constructed from tandem satellite altimeter datasets. J. Atmos. Oceanic Technol., 20, 12761302, https://doi.org/10.1175/1520-0426(2003)020<1276:TAOSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, and M. G. Schlax, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Tech. Memo. NASA/TM-1999-104606, Vol. 15, 38 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.

  • Czaja, A., and N. Blunt, 2011: A new mechanism for ocean–atmosphere coupling in midlatitudes. Quart. J. Roy. Meteor. Soc., 137, 10951101, https://doi.org/10.1002/qj.814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., C. Frankignoul, S. Minobe, and B. Vannière, 2019: Simulating the midlatitude atmospheric circulation: What might we gain from high-resolution modeling of air–sea interactions? Curr. Climate Change Rep., 5, 390406, https://doi.org/10.1007/s40641-019-00148-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, and S. T. Gille, 2006: Location of the polar front from AMSR-E satellite sea surface temperature measurements. J. Phys. Oceanogr., 36, 20752089, https://doi.org/10.1175/JPO2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Eden, C., and H. Dietze, 2009: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res., 114, C05023, https://doi.org/10.1029/2008JC005129.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and et al. , 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Godfrey, G. Wick, J. Edson, and G. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, https://doi.org/10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and et al. , 2019: Sources and sinks of ocean mesoscale eddy energy: A joint US CLIVAR and CLIVAR Workshop Rep., 2019-5, 21 pp., https://doi.org/10.5065/CH5R-5034.

    • Crossref
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, https://doi.org/10.1016/S0377-0265(00)00049-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hirata, H., and M. Nonaka, 2021: Impacts of strong warm ocean currents on development of extratropical cyclones through the warm and cold conveyor belts: A review. Tropical and Extratropical Air–Sea Interactions, Elsevier, 267–293, http://www.sciencedirect.com/science/article/pii/B9780128181560000149.

    • Crossref
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Hong, S.-Y., and J.-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, https://doi.org/10.1175/JCLI3570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 33773401, https://doi.org/10.1175/2010JCLI3910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jullien, S., S. Masson, V. Oerder, G. Samson, F. Colas, and L. Renault, 2020: Impact of ocean–atmosphere current feedback on ocean mesoscale activity: Regional variations and sensitivity to model resolution. J. Climate, 33, 25852602, https://doi.org/10.1175/JCLI-D-19-0484.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and S. Courtney, 1991: A transition in weather over the Agulhas Current. S. Afr. J. Mar. Sci., 10, 159171, https://doi.org/10.2989/02577619109504629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., H. R. Valentine, and J. R. E. Lutjeharms, 1993: Influence of the Agulhas Current on summer rainfall along the southeast coast of South Africa. J. Appl. Meteor., 32, 12821287, https://doi.org/10.1175/1520-0450(1993)032<1282:IOTACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and S. Minobe, 2017: Storm track response to SST fronts in the northwestern Pacific region in an AGCM. J. Climate, 30, 10811102, https://doi.org/10.1175/JCLI-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., S. Minobe, and S.-P. Xie, 2010: Precipitation response to the Gulf Stream in an atmospheric GCM. J. Climate, 23, 36763698, https://doi.org/10.1175/2010JCLI3261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. J. Climate, 120, 25232539, https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, R. W., T. J. Woollings, B. J. Hoskins, K. D. Williams, C. H. O’Reilly, and G. Masato, 2018: Impact of Gulf Stream SST biases on the global atmospheric circulation. Climate Dyn., 51, 33693387, https://doi.org/10.1007/s00382-018-4083-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. J. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., X. Xie, and P. P. Niiler, 2007: Ocean–atmosphere interaction over Agulhas Extension meanders. J. Climate, 20, 57845797, https://doi.org/10.1175/2007JCLI1732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, E. R. G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 23442360, https://doi.org/10.1175/JCLI3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., and R. C. van Ballegooyen, 1984: Topographic control in the Agulhas Current system. Deep-Sea Res., 31A, 13211337, https://doi.org/10.1016/0198-0149(84)90004-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., and H. R. Roberts, 1988: The Natal pulse: An extreme transient of the Agulhas Current. J. Geophys. Res., 93, 631645, https://doi.org/10.1029/JC093iC01p00631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., and R. C. van Ballegooyen, 1988: Anomalous upstream retroflection in the Agulhas Current. Science, 240, 1770, https://doi.org/10.1126/science.240.4860.1770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, R. M. J.-S. Hseih, D. Wu, X. Lin, L. Wu, and Z. Jing, 2015a: Distant influence of Kuroshio eddies on North Pacific weather patterns. Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, D. Wu, X. Lin, L. Wu, and X. Wan, 2015b: Winter extreme flux events in the Kuroshio and Gulf Stream Extension regions and relationship with modes of North Pacific and Atlantic variability. J. Climate, 28, 49504970, https://doi.org/10.1175/JCLI-D-14-00642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and et al. , 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcheggiani, A., and M. H. P. Ambaum, 2020: The role of heat-flux–temperature covariance in the evolution of weather system. Wea. Climate Dyn., 1, 701713, https://doi.org/10.5194/wcd-1-701-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., 1995: Sea-surface temperature–South African rainfall associations, 1910–1989. Int. J. Climatol., 15, 119135, https://doi.org/10.1002/joc.3370150202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messager, C., and S. Swart, 2016: Significant atmospheric boundary layer change observed above an Agulhas Current warm core eddy. Adv. Meteor., 2016, 3659657, https://doi.org/10.1155/2016/3659657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisan, J. R., and P. P. Niiler, 1998: The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr., 28, 401421, https://doi.org/10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreton, S. M., D. Ferreira., M. J. Roberts, and H. T. Hewitt, 2020: Evaluating surface eddy properties in coupled climate simulations with ‘eddy-present’ and ‘eddy-rich’ ocean resolution. Ocean. Modell., 147, 101567, https://doi.org/10.1016/j.ocemod.2020.101567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 18281844, https://doi.org/10.1175/1520-0442(2004)017<1828:SVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Nakamura, and J. L. Anderson, 1997: The role of high- and low-frequency dynamics and blocking formation. Mon. Wea. Rev., 125, 20742093, https://doi.org/10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–346.

    • Crossref
    • Export Citation
  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1972: Energy budget of wave disturbances over the Marshall Islands during years of 1956 and 1958. J. Meteor. Soc. Japan, 50, 7184, https://doi.org/10.2151/jmsj1965.50.2_71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nkwinkwa Njouodo, A. S., S. Koseki, N. Keenlyside, and M. Rouault, 2018: Atmospheric signature of the Agulhas Current. Geophys. Res. Lett., 45, 51855193, https://doi.org/10.1029/2018GL077042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354, https://doi.org/10.1175/2780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 27062723, https://doi.org/10.1175/JCLI3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2017: The Gulf Stream convergence zone in the time-mean winds. J. Climate, 74, 23832412, https://doi.org/10.1175/JAS-D-16-0213.1.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixoto, 1974: The annual cycle of the energetics of the atmosphere on a planetary scale. J. Geophys. Res., 79, 27052719, https://doi.org/10.1029/JC079i018p02705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 5266, https://doi.org/10.1002/qj.2334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833838, https://doi.org/10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., and A. Czaja, 2016: On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quart. J. Roy. Meteor. Soc., 142, 15541561, https://doi.org/10.1002/qj.2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., and H. Seo, 2018: A new framework for near-surface wind convergence over the Kuroshio Extension and Gulf Stream in wintertime: The role of atmospheric fronts. Geophys. Res. Lett., 45, 99099918, https://doi.org/10.1029/2018GL080135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlin, N. S., P. de Szoeke, D. B. Chelton, R. M. Samelson, E. D. Skyllingstad, and L. W. O’Neill, 2014: Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations. Mon. Wea. Rev., 142, 42844307, https://doi.org/10.1175/MWR-D-13-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlin, N. S., I. Kamenkovich, Y. Gao, and B. P. Kirtman, 2020: A study of mesoscale air–sea interaction in the Southern Ocean with a regional coupled model. Ocean Modell., 153, 101660, https://doi.org/10.1016/j.ocemod.2020.101660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2001: Evidence for the influence of the Agulhas Current on regional atmospheric circulation patterns. J. Climate, 14, 27692778, https://doi.org/10.1175/1520-0442(2001)014<2769:EFTIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and H. M. Mulenga, 1999: Relationships between South African rainfall and SST anomalies in the southwest Indian Ocean. Int. J. Climatol., 19, 16511673, https://doi.org/10.1002/(SICI)1097-0088(199912)19:15<1651::AID-JOC439>3.0.CO;2-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 34393453, https://doi.org/10.1175/JPO-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and P. Penven, 2017: Modulation of the Agulhas Current retroflection and leakage by oceanic current interaction with the atmosphere in coupled simulations. J. Phys. Oceanogr., 47, 20772100, https://doi.org/10.1175/JPO-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and J. Gula, 2018: Dampening of submesoscale currents by air–sea stress coupling in the Californian upwelling system. Sci. Rep., 8, 13388, https://doi.org/10.1038/s41598-018-31602-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., P. Marchesiellio, S. Masson, and J. C. McWilliams, 2019: Remarkable control of western boundary currents by eddy killing, a mechanical air–sea coupling process. Geophys. Res. Lett., 46, 27432751, https://doi.org/10.1029/2018GL081211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., M. D. Palmer, D. G. D. R. P. Allan, P. P. Hyder, C. Liu, and D. Smith, 2017: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content. J. Geophys. Res. Oceans, 122, 726744, https://doi.org/10.1002/2016JC012278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M., and P. Penven, 2011: New perspectives on Natal pulses from satellite observations. J. Geophys. Res., 116, C07013, https://doi.org/10.1029/2010JC006866.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., A. M. Lee-Thorp, and J. R. E. Lutjeharms, 2000: Observations of the atmospheric boundary layer above the Agulhas Current during alongcurrent winds. J. Phys. Oceanogr., 30, 4050, https://doi.org/10.1175/1520-0485(2000)030<0040:TABLAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88, 19651978, https://doi.org/10.1175/BAMS-88-12-1965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., 2017: Distinct influence of air–sea interactions mediated by mesoscale sea surface temperature and surface current in the Arabian Sea. J. Climate, 30, 80618080, https://doi.org/10.1175/JCLI-D-16-0834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. O. Roads, 2007: The Scripps Coupled Ocean–Atmosphere Regional (SCOAR) model, with applications in the eastern Pacific sector. J. Climate, 20, 381402, https://doi.org/10.1175/JCLI4016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. C. Subramanian, A. J. Miller, and N. R. Cavanaugh, 2014: Coupled impacts of the diurnal cycle of sea surface temperature on the Madden–Julian oscillation. J. Climate, 27, 84228443, https://doi.org/10.1175/JCLI-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, https://doi.org/10.1175/JPO-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., Y.-O. Kwon, T. M. Joyce, and C. C. Ummenhofer, 2017: On the predominant nonlinear response of the extratropical atmosphere to meridional shift of the Gulf Stream. J. Climate, 30, 96799702, https://doi.org/10.1175/JCLI-D-16-0707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. C. Subramanian, H. Song, and J. S. Chowdary, 2019: Coupled effects of ocean current on wind stress in the Bay of Bengal: Eddy energetics and upper ocean stratification. Deep-Sea Res. II, 168, 104617, https://doi.org/10.1016/j.dsr2.2019.07.005.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheldon, L., A. Czaja, B. Vannière, C. Morcrette, B. Sohet, M. Casado, and D. Smith, 2017: A warm path to Gulf Stream–troposphere interactions. Tellus, 69A, 113, https://doi.org/10.1080/16000870.2017.1299397.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1995: A climatology of cyclogenesis for the Southern Hemisphere. Mon. Wea. Rev., 123, 16011619, https://doi.org/10.1175/1520-0493(1995)123<1601:ACOCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., J. A. Renwick, and J. W. Kidson, 1997: Low-frequency variability of Southern Hemisphere sea level pressure and weather system activity. Mon. Wea. Rev., 125, 25312543, https://doi.org/10.1175/1520-0493(1997)125<2531:LFVOSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singleton, A. T., and C. J. C. Reason, 2006: Numerical simulations of a severe rainfall event over the Eastern Cape coast of South Africa: Sensitivity to sea surface temperature and topography. Tellus, 58A, 335367, https://doi.org/10.1111/j.1600-0870.2006.00180.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siqueira, L., B. P. Kirtman, and L. C. Laurindo, 2021: Forecasting remote atmospheric responses to decadal Kuroshio stability transitions. J. Climate, 34, 379395, https://doi.org/10.1175/JCLI-D-20-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805828, https://doi.org/10.1007/s00382-013-1980-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, and R. A. Tomas, 2019a: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability. J. Climate, 32, 23972421, https://doi.org/10.1175/JCLI-D-18-0576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. Msadek, Y. Kwon, J. F. Booth, and C. Zarzycki, 2019b: Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments. Climate Dyn., 52, 20672089, https://doi.org/10.1007/s00382-018-4237-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, S. Larson, and R. A. Tomas, 2020: What drives upper-ocean temperature variability in coupled climate models and observations. J. Climate, 33, 577596, https://doi.org/10.1175/JCLI-D-19-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, M. A. Alexander, Y.-O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 11261147, https://doi.org/10.1175/JCLI-D-14-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, H., J. Marshall, D. J. McGillicuddy, and H. Seo, 2020: Impact of current-wind interaction on vertical processes in the Southern Ocean. J. Geophys. Res. Oceans., 125, e2020JC016046, https://doi.org/10.1029/2020JC016046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., P. Cornillon, and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res., 111, C12006, https://doi.org/10.1029/2006JC003680.

    • Search Google Scholar
    • Export Citation
  • Soufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila, 2016: On effective resolution in ocean models. Ocean Modell., 98, 3650, https://doi.org/10.1016/j.ocemod.2015.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., and R. T. Pierrehumbert, 1997: Lower-tropospheric heat transport in the Pacific storm track. J. Atmos. Sci., 54, 15331543, https://doi.org/10.1175/1520-0469(1997)054<1533:LTHTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takatama, K., and N. Schneider, 2017: The role of back pressure in the atmospheric response to surface stress induced by the Kuroshio. J. Atmos. Sci., 74, 597615, https://doi.org/10.1175/JAS-D-16-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., L. D. Talley, M. R. Mazloff, and I. Cerovečki, 2016: Zonal variations in the Southern Ocean heat budget. J. Climate, 29, 65636579, https://doi.org/10.1175/JCLI-D-15-0630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsugawa, M., and H. Hasumi, 2010: Generation and growth mechanism of a Natal pulse. J. Phys. Oceanogr., 40, 15971612, https://doi.org/10.1175/2010JPO4347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., and P. Speth, 1991: The global energy cycle of stationary and transient atmospheric waves: Results from ECMWF analyses. Meteor. Atmos. Phys., 45, 125138, https://doi.org/10.1007/BF01029650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannière, B., A. C. H. Dacre, and T. Woollings, 2017: A “cold path” for the Gulf Stream–troposphere connection. J. Climate, 30, 13631379, https://doi.org/10.1175/JCLI-D-15-0749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdy, A., and M. R. Mazloff, 2017: A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Oceans, 122, 69686988, https://doi.org/10.1002/2016JC012650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, N. D., 1990: Links between South African summer rainfall and temperature variability of the Agulhas and Benguela Current systems. J. Geophys. Res., 95, 32973319, https://doi.org/10.1029/JC095iC03p03297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, https://doi.org/10.1175/JAS-D-12-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbenson, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budget. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., P. Chang, B. Qiu, Q. Zhang, Z. C. L. Wu, and H. Wang, 2019: Mesoscale air–sea interaction and its role in eddy energy dissipation in the Kuroshio Extension. J. Climate, 32, 86598676, https://doi.org/10.1175/JCLI-D-19-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, D. P. Marshall, and C. Wunsch, 2012: On the wind power input to the ocean general circulation. J. Phys. Oceanogr., 42, 13571365, https://doi.org/10.1175/JPO-D-12-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Climate, 30, 59235941, https://doi.org/10.1175/JCLI-D-16-0597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., X. Ma, and L. Wu, 2019: Effect of mesoscale oceanic eddies on extratropical cyclogenesis: A tracking approach. J. Geophys. Res. Atmos., 124, 64116422, https://doi.org/10.1029/2019JD030595.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 78 78 78
Full Text Views 24 24 24
PDF Downloads 31 31 31

Impacts of Ocean Currents on the South Indian Ocean Extratropical Storm Track through the Relative Wind Effect

View More View Less
  • 1 a Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 b Yonsei University, Seoul, South Korea
  • | 3 c Oregon State University, Corvallis, Oregon
  • | 4 d Scripps Institution of Oceanography, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air–sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyodae Seo, hseo@whoi.edu

This article is included in the Climate Implications of Frontal Scale Air-Sea Interaction Special Collection.

Abstract

This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air–sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyodae Seo, hseo@whoi.edu

This article is included in the Climate Implications of Frontal Scale Air-Sea Interaction Special Collection.

Save