Abstract
We present four 140-year wind-wave climate simulations (1961-2100) forced with surface wind speed and sea ice concentration from two CMIP6 GCMs under two different climate scenarios: SSP1-2.6 and SSP5-8.5. A global three-grid system is implemented in WAVEWATCH III® to simulate the wave-ice interactions in the Arctic and Antarctic regions. The models perform well in comparison with global satellite altimeter and in-situ buoys climatology. The comparison with traditional trend analyses demonstrates the present GCM-forced wave models’ ability to reproduce the main historical climate signals. The long-term datasets allow a comprehensive description of the 20th and 21st century wave climate and yield statistically robust trends. Analysis of the latest IPCC ocean climatic regions highlights four regions where changes in wave climate are projected to be most significant: the Arctic, the North Pacific, the North Atlantic, and the Southern Ocean. The main driver of offshore wave climate change is the wind, except for the Arctic where the significant sea ice retreat causes a sharp increase in the projected wave heights. Distinct changes in the wave period and the wave direction are found in the Southern Hemisphere, where the poleward shift of the Southern Ocean westerlies causes an increase in the wave period of up to 5% and a counter-clockwise change in wave direction of up to 5°. The new CMIP6 forced wave models improve in performance compared to previous CMIP5 forced wave models, and will ultimately contribute to a new CMIP6 wind-wave climate model ensemble, crucial for coastal adaptation strategies and the design of future marine offshore structures and operations.