Long-term climate impacts of large stratospheric water vapor perturbations

Martin Jucker aClimate Change Research Centre and Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia

Search for other papers by Martin Jucker in
Current site
Google Scholar
PubMed
Close
,
Chris Lucas bBureau of Meteorology, Melbourne, Australia

Search for other papers by Chris Lucas in
Current site
Google Scholar
PubMed
Close
, and
Deepashree Dutta aClimate Change Research Centre and Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia

Search for other papers by Deepashree Dutta in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The amount of water vapor injected into the stratosphere after the eruption of Hunga Tonga-Hunga Ha’apai (HTHH) was unprecedented, and it is therefore unclear what it might mean for surface climate. We use chemistry climate model simulations to assess the long-term surface impacts of stratospheric water vapor (SWV) anomalies similar to those caused by HTHH, but neglect the relatively minor aerosol loading from the eruption. The simulations show that the SWV anomalies lead to strong and persistent warming of Northern Hemisphere landmasses in boreal winter, and austral winter cooling over Australia, years after eruption, demonstrating that large SWV forcing can have surface impacts on a decadal timescale. We also emphasize that the surface response to SWV anomalies is more complex than simple warming due to greenhouse forcing and is influenced by factors such as regional circulation patterns and cloud feedbacks. Further research is needed to fully understand the multi-year effects of SWV anomalies and their relationship with climate phenomena like El Nino Southern Oscillation.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Deepashree Dutta’s current affiliation: Cambridge University, U.K.

Corresponding author: Martin Jucker, publications@martinjucker.com

Abstract

The amount of water vapor injected into the stratosphere after the eruption of Hunga Tonga-Hunga Ha’apai (HTHH) was unprecedented, and it is therefore unclear what it might mean for surface climate. We use chemistry climate model simulations to assess the long-term surface impacts of stratospheric water vapor (SWV) anomalies similar to those caused by HTHH, but neglect the relatively minor aerosol loading from the eruption. The simulations show that the SWV anomalies lead to strong and persistent warming of Northern Hemisphere landmasses in boreal winter, and austral winter cooling over Australia, years after eruption, demonstrating that large SWV forcing can have surface impacts on a decadal timescale. We also emphasize that the surface response to SWV anomalies is more complex than simple warming due to greenhouse forcing and is influenced by factors such as regional circulation patterns and cloud feedbacks. Further research is needed to fully understand the multi-year effects of SWV anomalies and their relationship with climate phenomena like El Nino Southern Oscillation.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Deepashree Dutta’s current affiliation: Cambridge University, U.K.

Corresponding author: Martin Jucker, publications@martinjucker.com
Save