The impact of interactive ocean dynamics on Atlantic sea surface temperature variability

Olivia Gozdz aGeorge Mason University

Search for other papers by Olivia Gozdz in
Current site
Google Scholar
PubMed
Close
,
Martha W. Buckley aGeorge Mason University

Search for other papers by Martha W. Buckley in
Current site
Google Scholar
PubMed
Close
, and
Timothy DelSole aGeorge Mason University

Search for other papers by Timothy DelSole in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of interactive ocean dynamics on internal variations of Atlantic sea surface temperature (SST) is investigated by comparing preindustrial control simulations of a fully coupled atmosphere-ocean-ice model to the same atmosphere-ice model with the ocean replaced by a motionless slab layer (henceforth slab ocean model). Differences in SST variability between the two models are diagnosed by an optimization technique that finds components whose variance differs as much as possible. This technique reveals that Atlantic SST variability differs significantly between the two models. The two components with the most extreme enhancement of SST variance in the slab ocean model resemble the tripole SST pattern associated with the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Variability (AMV) pattern. This result supports previous claims that ocean dynamics are not necessary for the AMV, although ocean dynamics lead to slight increases in the memory of both the AMV and the NAO tripole. The component with the most extreme enhancement of SST variance in the fully coupled model resembles the Atlantic Niño pattern, confirming the ability of our technique to isolate physical modes known to require ocean dynamics. The second component with more variance in the fully coupled model is a mode of subpolar SST variability. Both reemergence of SST anomalies and changes in ocean heat transport lead to increased SST variance and memory in the subpolar Atlantic. Despite large differences in the mean and variability of SST, atmospheric variability is quite similar between the two models, confirming that most atmospheric variability is generated by internal atmospheric dynamics.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martha W. Buckley, marthabuckley@gmail.com

Abstract

The impact of interactive ocean dynamics on internal variations of Atlantic sea surface temperature (SST) is investigated by comparing preindustrial control simulations of a fully coupled atmosphere-ocean-ice model to the same atmosphere-ice model with the ocean replaced by a motionless slab layer (henceforth slab ocean model). Differences in SST variability between the two models are diagnosed by an optimization technique that finds components whose variance differs as much as possible. This technique reveals that Atlantic SST variability differs significantly between the two models. The two components with the most extreme enhancement of SST variance in the slab ocean model resemble the tripole SST pattern associated with the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Variability (AMV) pattern. This result supports previous claims that ocean dynamics are not necessary for the AMV, although ocean dynamics lead to slight increases in the memory of both the AMV and the NAO tripole. The component with the most extreme enhancement of SST variance in the fully coupled model resembles the Atlantic Niño pattern, confirming the ability of our technique to isolate physical modes known to require ocean dynamics. The second component with more variance in the fully coupled model is a mode of subpolar SST variability. Both reemergence of SST anomalies and changes in ocean heat transport lead to increased SST variance and memory in the subpolar Atlantic. Despite large differences in the mean and variability of SST, atmospheric variability is quite similar between the two models, confirming that most atmospheric variability is generated by internal atmospheric dynamics.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martha W. Buckley, marthabuckley@gmail.com
Save