MODIS Reflectance and Active Fire Data for Burn Mapping in Colombia

Silvia Merino-de-Miguel EUIT Forestal, Technical University of Madrid, Madrid, Spain

Search for other papers by Silvia Merino-de-Miguel in
Current site
Google Scholar
PubMed
Close
,
Federico González-Alonso Remote Sensing Laboratory, CIFOR-INIA, Madrid, Spain

Search for other papers by Federico González-Alonso in
Current site
Google Scholar
PubMed
Close
,
Margarita Huesca ETSI Montes, Technical University of Madrid, Madrid, Spain

Search for other papers by Margarita Huesca in
Current site
Google Scholar
PubMed
Close
,
Dolors Armenteras Department of Biology, National University of Colombia, Bogotá, Colombia

Search for other papers by Dolors Armenteras in
Current site
Google Scholar
PubMed
Close
, and
Carol Franco Department of Biology, National University of Colombia, Bogotá, Colombia

Search for other papers by Carol Franco in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite-based strategies for burned area mapping may rely on two types of remotely sensed data: postfire reflectance images and active fire detection. This study uses both methods in a synergistic way. In particular, burned area mapping is carried out using MCD43B4 [Moderate Resolution Imaging Spectrometer (MODIS); Terra + Aqua nadir bidirectional reflectance distribution function (BRDF); adjusted reflectance 16-day L3 global 1-km sinusoidal grid V005 (SIN)] postfire datasets and MODIS active fire products. The developed methodology was tested in Colombia, an area not covered by any known MODIS ground antenna, using data from 2004. The resulting burned area map was validated using a high-spatial-resolution Landsat-7 Enhanced Thematic Mapper Plus (ETM+) image and compared to two global burned area products: L3JRC (terrestrial ecosystem monitoring global burnt area product) and MCD45A1 (MODIS Terra + Aqua burned area monthly global 500-m SIN grid V005). The results showed that this method would be of great interest at regional to national scales because it proved to be quick, accurate, and cost effective.

* Corresponding author address: Dr. Silvia Merino-de-Miguel, UD Topografía, EUIT Forestal (UPM), Ciudad Universitaria, Madrid 28040, Spain. silvia.merino@upm.es

This article included in the Fire in the Earth Systems: Toward an Operational Use of Remote Sensing in Forest Fire Management special collection.

Abstract

Satellite-based strategies for burned area mapping may rely on two types of remotely sensed data: postfire reflectance images and active fire detection. This study uses both methods in a synergistic way. In particular, burned area mapping is carried out using MCD43B4 [Moderate Resolution Imaging Spectrometer (MODIS); Terra + Aqua nadir bidirectional reflectance distribution function (BRDF); adjusted reflectance 16-day L3 global 1-km sinusoidal grid V005 (SIN)] postfire datasets and MODIS active fire products. The developed methodology was tested in Colombia, an area not covered by any known MODIS ground antenna, using data from 2004. The resulting burned area map was validated using a high-spatial-resolution Landsat-7 Enhanced Thematic Mapper Plus (ETM+) image and compared to two global burned area products: L3JRC (terrestrial ecosystem monitoring global burnt area product) and MCD45A1 (MODIS Terra + Aqua burned area monthly global 500-m SIN grid V005). The results showed that this method would be of great interest at regional to national scales because it proved to be quick, accurate, and cost effective.

* Corresponding author address: Dr. Silvia Merino-de-Miguel, UD Topografía, EUIT Forestal (UPM), Ciudad Universitaria, Madrid 28040, Spain. silvia.merino@upm.es

This article included in the Fire in the Earth Systems: Toward an Operational Use of Remote Sensing in Forest Fire Management special collection.

Save
  • Al-Rawi, K. R. , J. L. Casanova , and A. Romo , 2001: IFEMS: A new approach for monitoring wildfire evolution with NOAA-AVHRR imagery. Int. J. Remote Sens. 22 , 20332042.

    • Search Google Scholar
    • Export Citation
  • Armenteras, D. , M. Romero , and G. Galindo , 2005: Vegetation fire in the savannas of the Llanos Orientales of Colombia. World Resour. Rev. 17 , 531543.

    • Search Google Scholar
    • Export Citation
  • Armenteras, D. , F. González-Alonso , and C. Franco , 2009: Distribución espacial y temporal de incendios en Colombia utilizando datos de anomalías térmicas. Caldasia 31 , 291306.

    • Search Google Scholar
    • Export Citation
  • Boschetti, L. , H. D. Eva , P. A. Brivio , and J. M. Grégoire , 2004a: Lessons to be learned from the comparison of three satellite-derived biomass burning products. Geophys. Res. Lett. 31 , L21501. doi:10.1029/2004GL021229.

    • Search Google Scholar
    • Export Citation
  • Boschetti, L. , E. P. Flasse , and P. A. Brivio , 2004b: Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic producers: The Pareto Boundary. Remote Sens. Environ. 91 , 280292.

    • Search Google Scholar
    • Export Citation
  • Chang, D. , and Y. Song , 2009: Comparison of L3JRC and MODIS global burned area products from 2000 to 2007. J. Geophys. Res. 114 , D16106. doi:10.1029/2008JD011361.

    • Search Google Scholar
    • Export Citation
  • Chuvieco, E. , and Coauthors , 2008: Global burned-land estimation in Latin America using MODIS composite data. Ecol. Appl. 18 , 6479.

    • Search Google Scholar
    • Export Citation
  • Cochrane, M. A. , and W. F. Laurance , 2008: Synergisms among fire, land use, and climate change in the Amazon. Ambio 37 , (7-8). 522527.

    • Search Google Scholar
    • Export Citation
  • Fraser, R. H. , Z. Li , and J. Cihlar , 2000: Hotspot and NDVI Differencing Synergy (HANDS): A new technique of burned area mapping over boreal forest. Remote Sens. Environ. 74 , 362376.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A. , D. Muchoney , D. McIver , F. Gao , J. F. C. Hodges , and A. H. Strahler , 2000: Characterization of North American land cover from NOAA-AVHRR data using the EOS MODIS land cover classification algorithm. Geophys. Res. Lett. 27 , 977980.

    • Search Google Scholar
    • Export Citation
  • Giglio, L. , J. Descloitres , C. O. Justice , and Y. J. Kaufman , 2003: An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 87 , 273282.

    • Search Google Scholar
    • Export Citation
  • Giglio, L. , I. Csiszar , and C. O. Justice , 2006a: Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. 111 , G02016. doi:10.1029/2005JG000142.

    • Search Google Scholar
    • Export Citation
  • Giglio, L. , G. R. van der Werf , J. T. Randersron , G. J. Collatz , and P. Kasibhatla , 2006b: Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 6 , 957974.

    • Search Google Scholar
    • Export Citation
  • Giglio, L. , T. Lodoba , D. P. Roy , B. Quayle , and C. O. Justice , 2009: An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 113 , 408420.

    • Search Google Scholar
    • Export Citation
  • González-Alonso, F. , and S. Merino-de-Miguel , 2009: Integration of AWiFS and MODIS active fire data for burn mapping at regional level using the Burned Area Synergic Algorithm (BASA). Int. J. Wildland Fire 18 , 404414.

    • Search Google Scholar
    • Export Citation
  • Grégoire, J. M. , K. Tansey , and J. M. M. Silva , 2003: The GBA initiative: Developing a global burned area database from SPOT-VEGETATION imagery. Int. J. Remote Sens. 24 , 13691376.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, W. A. , B. Orthen , and P. K. Vargas Do Nascimento , 2003: Comparative fire ecology of tropical savanna and forest trees. Funct. Ecol. 17 , 720726.

    • Search Google Scholar
    • Export Citation
  • Huesca, M. , F. González-Alonso , J. M. Cuevas , and S. Merino-de-Miguel , 2008: Estimación de la superficie quemada en los incendios forestales de Canarias de 2007 utilizando sinérgicamente imágenes MODIS y anomalías térmicas. Inves. Agrar. Sistemas Recur. For. 17 , 308316.

    • Search Google Scholar
    • Export Citation
  • Justice, C. O. , and Coauthors , 2002: The MODIS fire products. Remote Sens. Environ. 83 , 244262.

  • Kerr, J. K. , and M. Ostrovsky , 2003: From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 18 , 299305.

    • Search Google Scholar
    • Export Citation
  • Key, C. H. , and N. C. Benson , 1999: Measuring and remote sensing of burn severity: The CBI and NBR. Proc. Joint Fire Science Conf. and Workshop, Boise, ID, University of Idaho and International Association of Wildland Fire, [Available online at http://www.nrmsc.usgs.gov/files/norock/products/SEVER36_im_copy6.pdf].

    • Search Google Scholar
    • Export Citation
  • Lentile, L. B. , and Coauthors , 2006: Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 15 , 319345.

    • Search Google Scholar
    • Export Citation
  • Loboda, T. , K. J. O’Neal , and I. Csiszar , 2007: Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens. Environ. 109 , 429442.

    • Search Google Scholar
    • Export Citation
  • Merino-de-Miguel, S. , M. Huesca , and F. González-Alonso , 2010: MODIS reflectance and active fire data for burn mapping and assessment at regional level. Ecol. Modell. 221 , 6774.

    • Search Google Scholar
    • Export Citation
  • NASA Landsat Program , 2004: Landsat ETM+ scene L71006057_05720040201, SLC_Off. USGS. [Available online at http://glcf.umiacs.umd.edu/data/landsat/].

    • Search Google Scholar
    • Export Citation
  • NASA/University of Maryland , 2002: MODIS hotspot/active fire detections. MODIS Rapid Response Project, NASA/GSFC, University of Maryland, Fire Information for Resource Management System Dataset. [Available online at http://maps.geog.umd.edu].

    • Search Google Scholar
    • Export Citation
  • Pozo, D. , F. J. Olmo , and L. Alados Arboledas , 1997: Fire detection and growth monitoring using a multi-temporal technique on AVHRR mid-infrared and thermal channels. Remote Sens. Environ. 60 , 111120.

    • Search Google Scholar
    • Export Citation
  • Pu, R. , P. Gong , Z. Li , and J. Scarborough , 2004: A dynamic algorithm for wildfire mapping with NOAA/AVHRR data. Int. J. Wildland Fire 13 , 275285.

    • Search Google Scholar
    • Export Citation
  • Roldán-Zamarrón, A. , S. Merino-de-Miguel , F. González-Alonso , S. García-Gigorro , and J. M. Cuevas , 2006: Minas de Riotinto (south Spain) forest fire: Burned area assessment and fire severity mapping using Landsat 5-TM, Envisat-MERIS, and Terra-MODIS postfire images. J. Geophys. Res. 111 , G04S11. doi:10.1029/2005JG000136.

    • Search Google Scholar
    • Export Citation
  • Roy, D. P. , L. Giglio , J. D. Kendall , and C. O. Justice , 1999: Multi-temporal active-fire based burn scar detection algorithm. Int. J. Remote Sens. 20 , 10311038.

    • Search Google Scholar
    • Export Citation
  • Roy, D. P. , P. E. Lewis , and C. O. Justice , 2002: Burned area mapping using multi-temporal moderate spatial resolution data—A bi-directional reflectance model-based expectation approach. Remote Sens. Environ. 83 , 263286.

    • Search Google Scholar
    • Export Citation
  • Roy, D. P. , Y. Jin , P. E. Lewis , and C. O. Justice , 2005: Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ. 97 , 137162.

    • Search Google Scholar
    • Export Citation
  • Roy, D. P. , L. Boschetti , C. O. Justice , and J. Ju , 2008: The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112 , 36903707.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. , cited. 2010: MODIS BRDF/albedo product (MOD43B) user’s guide. MODIS. [Available online at http://www-modis.bu.edu/brdf/userguide/nbar.html].

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. , and Coauthors , 2002: First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens. Environ. 83 , 135148.

    • Search Google Scholar
    • Export Citation
  • Simon, M. , S. Plummer , F. Fierens , J. J. Hoelzemann , and O. Arino , 2004: Burnt area detection at global scale using ATSR-2: The GLOBSCAR products and their qualification. J. Geophys. Res. 109 , D14S02. doi:10.1029/2003JD003622.

    • Search Google Scholar
    • Export Citation
  • Stehman, S. V. , 1996: Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 62 , 7789.

  • Tansey, K. , and Coauthors , 2004: Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data. J. Geophys. Res. 109 , D14S03. doi:10.1029/2003JD003598.

    • Search Google Scholar
    • Export Citation
  • Tansey, K. , J. M. Grégoire , P. Defourny , R. Leigh , J. F. Pekel , E. van Bogaert , and E. Bartholomé , 2008: A new, global, multi-annual (2000-2007) burnt area product at 1 km resolution. Geophys. Res. Lett. 35 , L01401. doi:10.1029/2007GL031567.

    • Search Google Scholar
    • Export Citation
  • Van der Werf, G. R. , J. T. Randerson , L. Giglio , G. J. Collatz , P. S. Kasibhatla , and A. F. Arellano Jr. , 2006: Interannual variability of global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6 , 34233441.

    • Search Google Scholar
    • Export Citation
  • Van Leeuwen, W. J. C. , A. R. Huete , and T. W. Laing , 1999: MODIS vegetation index compositing approach: A prototype with AVHRR data. Remote Sens. Environ. 69 , 264280.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1330 441 31
PDF Downloads 588 152 19