Watershed-Scale Response to Climate Change through the Twenty-First Century for Selected Basins across the United States

Lauren E. Hay U.S. Geological Survey, Lakewood, Colorado

Search for other papers by Lauren E. Hay in
Current site
Google Scholar
PubMed
Close
,
Steven L. Markstrom U.S. Geological Survey, Lakewood, Colorado

Search for other papers by Steven L. Markstrom in
Current site
Google Scholar
PubMed
Close
, and
Christian Ward-Garrison U.S. Geological Survey, Lakewood, Colorado

Search for other papers by Christian Ward-Garrison in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The hydrologic response of different climate-change emission scenarios for the twenty-first century were evaluated in 14 basins from different hydroclimatic regions across the United States using the Precipitation-Runoff Modeling System (PRMS), a process-based, distributed-parameter watershed model. This study involves four major steps: 1) setup and calibration of the PRMS model in 14 basins across the United States by local U.S. Geological Survey personnel; 2) statistical downscaling of the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 climate-change emission scenarios to create PRMS input files that reflect these emission scenarios; 3) run PRMS for the climate-change emission scenarios for the 14 basins; and 4) evaluation of the PRMS output.

This paper presents an overview of this project, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be very different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the climate emission scenarios and how this uncertainty propagates through the hydrologic simulations. This paper concludes with a discussion of the lessons learned and potential for future work.

Corresponding author address: Lauren Hay, U.S. Geological Survey, P.O. Box 25046, MS 412, Denver Federal Center, Lakewood, CO 80225-0046. E-mail address: lhay@usgs.gov

This article is included in the Integrated Watershed-Scale Response to Climate Change in Selected Basins across the United States special collection.

Abstract

The hydrologic response of different climate-change emission scenarios for the twenty-first century were evaluated in 14 basins from different hydroclimatic regions across the United States using the Precipitation-Runoff Modeling System (PRMS), a process-based, distributed-parameter watershed model. This study involves four major steps: 1) setup and calibration of the PRMS model in 14 basins across the United States by local U.S. Geological Survey personnel; 2) statistical downscaling of the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 climate-change emission scenarios to create PRMS input files that reflect these emission scenarios; 3) run PRMS for the climate-change emission scenarios for the 14 basins; and 4) evaluation of the PRMS output.

This paper presents an overview of this project, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be very different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the climate emission scenarios and how this uncertainty propagates through the hydrologic simulations. This paper concludes with a discussion of the lessons learned and potential for future work.

Corresponding author address: Lauren Hay, U.S. Geological Survey, P.O. Box 25046, MS 412, Denver Federal Center, Lakewood, CO 80225-0046. E-mail address: lhay@usgs.gov

This article is included in the Integrated Watershed-Scale Response to Climate Change in Selected Basins across the United States special collection.

Save
  • Alley, R. B., and Coauthors, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 1–18.

    • Search Google Scholar
    • Export Citation
  • Antolik, M. S., 2000: An overview of the National Weather Service’s centralized statistical quantitative precipitation forecasts. J. Hydrol., 239, 306337.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., 2003a: Effects of IPCC SRES emissions scenarios on river runoff: A global perspective. Hydrol. Earth Syst. Sci., 7, 619641.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., 2003b: Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: Future streamflows in Britain. J. Hydrol., 270, 195213.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., and N. S. Reynard, 1996: The effects of climate change due to global warming on river flows in Great Britain. J. Hydrol., 183, 397424.

    • Search Google Scholar
    • Export Citation
  • Bjerklie, D. M., J. J. Starn, and C. Tamayo, 2010: Estimation of the effects of land use and groundwater withdrawals on streamflow for the Pomperaug River, Connecticut. U.S. Geological Survey Scientific Investigations Rep. 2010-5114, 93 pp.

    • Search Google Scholar
    • Export Citation
  • Bloschl, G., and A. Montanari, 2010: Climate change impacts—Throwing the dice? Hydrol. Processes, 24, 374381.

  • Boorman, D. B., and C. E. M. Sefton, 1997: Recognizing the uncertainty in quantification of the effects of climate change on hydrological response. Climatic Change, 35, 415434.

    • Search Google Scholar
    • Export Citation
  • Buytaert, W., R. Célleri, and L. Timbe, 2009: Predicting climate change impacts on water resources in the tropical Andes: The effects of GCM uncertainty. Geophys. Res. Lett., 36, L07406, doi:10.1029/2008GL037048.

    • Search Google Scholar
    • Export Citation
  • Carter, T. R., M. L. Parry, H. Harasawa, and S. Nishioka, 1994: IPCC technical guidelines for assessing climate change impacts and adaptations. University College London Special Rep., 59 pp.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., and D. R. Cayan, 1995: Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. J. Climate, 8, 606623.

    • Search Google Scholar
    • Export Citation
  • Diaz-Nieto, J., and R. L. Wilby, 2005: A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. Climatic Change, 69, 245268.

    • Search Google Scholar
    • Export Citation
  • Donohue, R. J., T. R. McVicar, and M. L. Roderick, 2010: Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol., 386, 186197.

    • Search Google Scholar
    • Export Citation
  • Draper, D., 1995: Assessment and propagation of model uncertainty. J. Roy. Stat. Soc., 57, 4597.

  • Dudley, R. W., 2008: Simulation of the quantity, variability, and timing of streamflow in the Dennys River basin, Maine, by use of a precipitation-runoff watershed model. U.S. Geological Survey Scientific Investigations Rep. 2008-5100, 44 pp.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, K., and U. Ulbrich, 2003: Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J. Hydrol., 284, 244252.

    • Search Google Scholar
    • Export Citation
  • Fealy, R., and J. Sweeney, 2008: Statistical downscaling of temperature, radiation and potential evapotranspiration to produce a multiple GCM ensemble mean for a selection of sites in Ireland. Ir. Geogr., 41, 127.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsopa, and C. Tebaldi, 2007: Review. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modeling. Int. J. Climatol., 27, 15471578.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2001: Regional climate information—Evaluation and projections. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 739–768.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and M. P. Clark, 2003: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282, 5675.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and M. Umemoto, 2006: Multiple-objective stepwise calibration using Luca. U.S. Geological Survey Open File Rep. 2006-1323, 25 pp.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and G. J. McCabe, 2010: Hydrologic effects of climate change in the Yukon River basin. Climatic Change, 100, 509523.

  • Hay, L. E., R. L. Wilby, and G. H. Leavesley, 2000: A comparison of delta change and downscaled SRES emission scenarios for three mountainous basins in the United States. J. Amer. Water Resour., 36, 387397.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., M. P. Clark, M. Pagowski, G. H. Leavesley, and W. J. Gutowski Jr., 2006a: One-way coupling of an atmospheric and a hydrologic model in Colorado. J. Hydrometeor., 7, 569589.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., G. H. Leavesley, and M. P. Clark, 2006b: Use of remotely-sensed snow covered area in watershed model calibration for the Sprague River, Oregon. Proc. Joint Eighth Federal Interagency Sedimentation Conf. and Third Federal Interagency Hydrologic Modeling Conf., Reno, NV, Subcommittee on Hydrology, 8 pp.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., G. H. Leavesley, M. P. Clark, S. L. Markstrom, R. J. Viger, and M. Umemoto, 2006c: Step-wise, multiple-objective calibration of a hydrologic model for a snowmelt-dominated basin. J. Amer. Water Resour., 42, 877890.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., G. J. McCabe, M. P. Clark, and J. C. Risley, 2009: Reducing streamflow forecast uncertainty: Application and qualitative assessment of the upper Klamath River basin, Oregon. J. Amer. Water Resour., 45, 580596.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477.

  • Jensen, M. E., and H. R. Haise, 1963: Estimating evapotranspiration from solar radiation. J. Hydraul. Div. Amer. Soc. Civ. Eng., 89, 1541.

    • Search Google Scholar
    • Export Citation
  • Khan, M. S., P. Coulibaly, and Y. Dibike, 2006: Uncertainty analysis of statistical downscaling methods. J. Hydrol., 319, 357382.

  • Kingston, D. G., M. C. Todd, R. G. Taylor, J. R. Thompson, and N. W. Arnell, 2009: Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys. Res. Lett., 36, L20403, doi:10.1029/2009GL040267.

    • Search Google Scholar
    • Export Citation
  • Koczot, K. M., A. E. Jeton, B. J. McGurk, and M. D. Dettinger, 2005: Precipitation-runoff processes in the Feather River basin, northeastern California, with prospects for streamflow predictability, water years 1971-97. U.S. Geological Survey Scientific Investigations Rep. 2004-5202, 82 pp.

    • Search Google Scholar
    • Export Citation
  • Leavesley, G. H., R. W. Lichty, B. M. Troutman, and L. G. Saindon, 1983: Precipitation-Runoff Modeling System: User’s manual. U.S. Geological Survey Water-Resources Investigations Rep. 83-4238, 207 pp.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson, and M. Prather, 2007: Historical overview of climate change science. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 93–127.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., 1976: Detection of trends in water quality data from records with dependent observations. Water Resour. Res., 12, 10371046.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Workshop on regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84, 8995.

    • Search Google Scholar
    • Export Citation
  • Markstrom, S. L., R. G. Niswonger, R. S. Regan, D. E. Prudic, and P. M. Barlow, 2008: GSFLOW—Coupled Ground-Water and Surface-Water Flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). U.S. Geological Survey Techniques and Methods 6-D1, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Mastin, M. C., and J. J. Vaccaro, 2002. Watershed models for decision support in the Yakima River basin, Washington. U.S. Geological Survey Open-File Rep. 2002-404, 46 pp.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and L. E. Hay, 1995: Hydrological effects of hypothetical climate change in the East River basin, Colorado. Hydrol. Sci. J., 40, 116.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and D. M. Wolock, 1997: Climate change and the detection of trends in annual runoff. Climate Res., 8, 129134.

  • McCarthy, J. J., O. F. Canziani, N. A. Leary, D. J. Dokken, and K. S. White, Eds., 2001: Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 1032 pp.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and K. A. Dunne, 2011: On the hydrologic adjustments of climate-model projections: The potential pitfall of potential evapotranspiration. Earth Interactions, 15. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772.

    • Search Google Scholar
    • Export Citation
  • Pilling, C., and J. A. A. Jones, 1999: High resolution equilibrium and transient climate change scenario implications for British runoff. Hydrol. Processes, 13, 28772895.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and H. Davies, 2009: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: Baseline climate. Climatic Change, 93, 177195.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., N. Reynard, and S. Crooks, 2002: Downscaling of global climate models for flood frequency analysis: Where are we now? Hydrol. Processes, 16, 11371150.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., T. E. Downing, R. Washington, A. Lopez, and M. New, 2007: Issues in the interpretation of climate model ensembles to inform decisions. Philos. Trans. Roy. Soc., 365A, 21632177.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., 2009: Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Processes, 23, 7894.

  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2004: Changes in snowmelt runoff timing in western North America under a “business as usual” climate change scenario. Climatic Change, 62, 217232.

    • Search Google Scholar
    • Export Citation
  • Szilagyi, J., 2001: Modeled areal evapotranspiration trends over the conterminous United States. J. Irrig. Drain. Eng., 127, 196200.

  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540.

    • Search Google Scholar
    • Export Citation
  • United Nations Environment Program, 1992: World Atlas of Desertification. Edward Arnold, 69 pp.

  • Urban, N. M., and K. Keller, 2009: Complementary observational constraints on climate sensitivity. Geophys. Res. Lett., 36, L04708, doi:10.1029/2008GL036457.

    • Search Google Scholar
    • Export Citation
  • Viger, R. J., L. E. Hay, J. W. Jones, and G. R. Buell, 2010: Accounting for large numbers of small water bodies in the application of the Precipitation-Runoff Modeling System in the Flint River basin, Georgia. U.S. Geological Survey Open File Rep. 2010-5062, 36 pp.

    • Search Google Scholar
    • Export Citation
  • Vining, K. C., 2002: Simulation of streamflow and wetland storage, Starkweather Coulee Subbasin, North Dakota, water years 1981-98. U.S. Geological Survey Water-Resources Investigations Rep. 02-4113, 28 pp.

    • Search Google Scholar
    • Export Citation
  • Walter, M. T., D. S. Wilks, J. Parlange, and R. L. Schneider, 2004: Increasing evapotranspiration from the conterminous United States. J. Hydrometeor., 5, 405408.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. W. L., P. D. Jones, K. R. Briffa, and G. Smith, 1990: Obtaining sub-grid scale information from coarse resolution general circulation model output. J. Geophys. Res., 95, 19431953.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., L. E. Hay, and G. H. Leavesley, 1999: A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol., 225, 6791.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., S. P. Charles, E. Zorita, B. Timbal, P. Whetton, and L. O. Mearns, 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting Material of the Intergovernmental Panel on Climate Change, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Xu, C., 1999: Climate change and hydrologic models: A review of existing gaps and recent research developments. Water Resour. Manage., 13, 369382.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8492 6948 229
PDF Downloads 2459 1966 1893