Simulations of Historical and Future Trends in Snowfall and Groundwater Recharge for Basins Draining to Long Island Sound

David M. Bjerklie Connecticut Water Science Center, U.S. Geological Survey, East Hartford, Connecticut

Search for other papers by David M. Bjerklie in
Current site
Google Scholar
PubMed
Close
,
Thomas J. Trombley Connecticut Water Science Center, U.S. Geological Survey, East Hartford, Connecticut

Search for other papers by Thomas J. Trombley in
Current site
Google Scholar
PubMed
Close
, and
Roland J. Viger Modeling of Watershed Systems, National Research Program, Water Resources, U.S. Geological Survey, Lakewood, Colorado

Search for other papers by Roland J. Viger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A regional watershed model was developed for watersheds contributing to Long Island Sound, including the Connecticut River basin. The study region covers approximately 40 900 km2, extending from a moderate coastal climate zone in the south to a mountainous northern New England climate zone dominated by snowmelt in the north. The input data indicate that precipitation and temperature have been increasing for the last 46 years (1961–2006) across the region. Minimum temperature has increased more than maximum temperature over the same period (1961–2006). The model simulation indicates that there was an upward trend in groundwater recharge across most of the modeled region. However, trends in increasing precipitation and groundwater recharge are not significant at the 0.05 level if the drought of 1961–67 is removed from the time series. The trend in simulated snowfall is not significant across much of the region, although there is a significant downward trend in southeast Connecticut and in central Massachusetts. To simulate future trends, two input datasets, one assuming high carbon emissions and one assuming low carbon emissions, were developed from GCM forecasts. Under both of the carbon emission scenarios, simulations indicate that historical trends will continue, with increases in groundwater recharge over much of the region and substantial snowfall decreases across Massachusetts, Connecticut, southern Vermont, and southern New Hampshire. The increases in groundwater recharge and decreases in snowfall are most pronounced for the high emission scenario.

Corresponding author address: David M. Bjerklie, Connecticut Water Science Center, U.S. Geological Survey, 101 Pitkin Street, East Hartford, CT 06108. E-mail address: dmbjerkl@usgs.gov

Abstract

A regional watershed model was developed for watersheds contributing to Long Island Sound, including the Connecticut River basin. The study region covers approximately 40 900 km2, extending from a moderate coastal climate zone in the south to a mountainous northern New England climate zone dominated by snowmelt in the north. The input data indicate that precipitation and temperature have been increasing for the last 46 years (1961–2006) across the region. Minimum temperature has increased more than maximum temperature over the same period (1961–2006). The model simulation indicates that there was an upward trend in groundwater recharge across most of the modeled region. However, trends in increasing precipitation and groundwater recharge are not significant at the 0.05 level if the drought of 1961–67 is removed from the time series. The trend in simulated snowfall is not significant across much of the region, although there is a significant downward trend in southeast Connecticut and in central Massachusetts. To simulate future trends, two input datasets, one assuming high carbon emissions and one assuming low carbon emissions, were developed from GCM forecasts. Under both of the carbon emission scenarios, simulations indicate that historical trends will continue, with increases in groundwater recharge over much of the region and substantial snowfall decreases across Massachusetts, Connecticut, southern Vermont, and southern New Hampshire. The increases in groundwater recharge and decreases in snowfall are most pronounced for the high emission scenario.

Corresponding author address: David M. Bjerklie, Connecticut Water Science Center, U.S. Geological Survey, 101 Pitkin Street, East Hartford, CT 06108. E-mail address: dmbjerkl@usgs.gov
Save
  • Arnell, N. W., 1999a: Climate change and global water resources. Global Environ. Change, 9 (Suppl.), S31S49.

  • Arnell, N. W., 1999b: The effect of climate change on hydrological regimes in Europe: A continental perspective. Global Environ. Change, 9, 523.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309.

    • Search Google Scholar
    • Export Citation
  • Bjerklie, D. M., J. J. Starn, and C. Tamayo, 2010: Estimation of the effects of land use and groundwater withdrawals on streamflow for the Pomperaug River, Connecticut. U.S. Geological Survey Scientific Investigations Rep. (SIR) 2010-5114, 81 pp.

    • Search Google Scholar
    • Export Citation
  • Burn, D. H., 1994: Hydrologic effects of climatic-change in west-central Canada. J. Hydrol., 160 (1–4), 5370.

  • Burns, D. A., J. Kraus, and M. R. McHale, 2007: Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J. Hydrol., 366, 155170.

    • Search Google Scholar
    • Export Citation
  • Chang, H. J., and I. W. Jung, 2010: Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. J. Hydrol., 388 (3–4), 186207.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and D. P. Lettenmaier, 2003: Simulation of spatial variability in snow and frozen soil. J. Geophys. Res., 108, 8858, doi:10.1029/2003JD003575.

    • Search Google Scholar
    • Export Citation
  • Choi, W., P. F. Rasmussen, A. R. Moore, and S. J. Kim, 2009: Simulating streamflow response to climate scenarios in central Canada using a simple statistical downscaling method. Climate Res., 40, 89102.

    • Search Google Scholar
    • Export Citation
  • Church, M. R., G. D. Bishop, and D. L. Cassell, 1995: Maps of regional evapotranspiration and runoff/precipitation ratios in the northeast United States. J. Hydrol., 168, 283298.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., A. G. Slater, A. P. Barrett, L. E. Hay, G. J. McCabe, B. Rajagopalan, and G. H. Leavesley, 2005: Assimilation of snow covered area information into hydrologic and land-surface models. Adv. Water Resour., 29, 12091221.

    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, M. K. Doggett, and J. I. Smith, 2007: Observer bias in daily precipitation measurements at United States cooperative network stations. Bull. Amer. Meteor. Soc., 88, 899912.

    • Search Google Scholar
    • Export Citation
  • Dudley, R. M., and G. Hodgkins, 2010: Historical summer baseflow trends for New England rivers. Proc. Maine Water Conf., Augusta, ME, University of Maine.

    • Search Google Scholar
    • Export Citation
  • Fennessey, N. M., and P. H. Kirshen, 1994: Evaporation and evapotranspiration under climate change in New England. J. Water Resour. Plann. Manage., 120, 4869.

    • Search Google Scholar
    • Export Citation
  • Gleick, P. H., 1987: Regional hydrologic consequences of increases in atmospheric CO2 and other trace gases. Climatic Change, 10, 137161.

    • Search Google Scholar
    • Export Citation
  • Goode, D., E. Koerkle, S. Hoffman, R. S. Regan, L. Hay, and S. Markstrom, 2010: Simulation of runoff and reservoir inflow for use in a flood-analysis model for the Delaware River, Pennsylvania, New Jersey, and New York, 2004-2006, U.S. Geological Survey Open-File Rep. 2010-1014, 68 pp.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., Bretherton, D., Haines, K., and Arnell, N. W., 2010: Global hydrology modelling and uncertainty: Running multiple ensembles with a campus grid. Philos. Trans. Royal Soc., 368, 40054021.

    • Search Google Scholar
    • Export Citation
  • Grady, S. J., and S. P. Garabedian, 1991: National Water Quality Assessment Program: The Connecticut River and Long Island coastal rivers. U.S. Geological Survey Open-File Rep. 91-15, 2 pp.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, T. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier, 2005: Effects of temperature and precipitation variability on snowpack trends in the western United States. J. Climate, 18, 45454561.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and M. Clark, 2000: Use of atmospheric forecasts in hydrologic models. Part 2: Application to hydrologic models. Proc. American Water Resources Association Spring Specialty Conf., Anchorage, AK, American Water Resources Association, 221–226.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and G. J. McCabe, 2002: Spatial variability in water-balance model performance in the conterminous United States. J. Amer. Water Resour. Assoc., 38, 846860.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and M. Clark, 2003: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282 (1–4), 5675.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., R. L. Wilby, and G. H. Leavesley, 2000: A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Amer. Water Resour. Assoc., 36, 387397.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., S. L. Markstrom, and C. Ward-Garrison, 2011: Watershed-scale response to climate change through the twenty-first century for selected basins across the United States. Earth Interactions, 15. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2006: Past and future changes in climate and hydrological indicators in the U.S. Northeast. Climate Dyn., 28, 381407.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2007: Regional climate change projections for the northeast U.S. Mitigation Adapt. Strategies Global Change, 13 (5–6), 425436.

    • Search Google Scholar
    • Export Citation
  • Hodgkins, G. A., and R. W. Dudley, 2006: Changes in the timing of winter–spring streamflows in eastern North America, 1913–2002. Geophys. Res. Lett., 33, L06402, doi:10.1029/2005GL025593.

    • Search Google Scholar
    • Export Citation
  • Hodgkins, G. A., I. C. James, and T. G. Huntington, 2002: Historical changes in lake ice-out dates as indicators of climate change in New England, 1850-2000. Int. J. Climatol., 22, 18191827.

    • Search Google Scholar
    • Export Citation
  • Hodgkins, G. A., R. W. Dudley, and T. G. Huntington, 2003: Changes in the timing of high river flows in New England over the 20th century. J. Hydrol., 278, 244252.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., G. A. Hodgkins, B. D. Keim, and R. W. Dudley, 2004: Changes in the proportion of precipitation occurring as snow in New England (1949–2000). J. Climate, 17, 26262636.

    • Search Google Scholar
    • Export Citation
  • Jain, S., and J. K. Eischeid, 2008: What a difference a century makes: Understanding the changing hydrologic regime and storage requirements in the upper Colorado River basin. Geophys. Res. Lett., 35, L16401, doi:10.1029/2008GL034715.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. E., and H. R. Haise, 1963: Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Div. Amer. Soc. Civ. Eng., 89, 1541.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. E., D. C. N. Rob, and C. E. Franzoy, 1969: Scheduling irrigations using climate-crop-soil data. Proc. National Conf. on Water Resources, New Orleans, LA, American Society of Civil Engineers, 20.

    • Search Google Scholar
    • Export Citation
  • Jha, M., Z. T. Pan, E. S. Takle, and R. Gu, 2004: Impacts of climate change on streamflow in the Upper Mississippi River Basin: A regional climate model perspective. J. Geophys. Res., 109, D09105, doi:10.1029/2003JD003686.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trend of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231242.

    • Search Google Scholar
    • Export Citation
  • Kendall, M., 1938: A new measure of rank correlation. Biometrika, 30 (1–2), 8189.

  • Kingston, D. G., M. C. Todd, R. G. Taylor, J. R. Thompson, and N. W. Arnell, 2009: Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys. Res. Lett., 36, L20403, doi:10.1029/2009GL040267.

    • Search Google Scholar
    • Export Citation
  • Kirshen, P. H., 2002: Potential impacts of global warming on groundwater in eastern Massachusetts. J. Water Resour. Plann. Manage., 128, 216226.

    • Search Google Scholar
    • Export Citation
  • Kleinn, J., C. Frei, J. Gurtz, D. Luthi, P. L. Vidale, and C. Schär, 2005: Hydrologic simulations in the Rhine basin driven by a regional climate model. J. Geophys. Res., 110, D04102, doi:10.1029/2004JD005143.

    • Search Google Scholar
    • Export Citation
  • Knowles, N., M. D. Dettinger, and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559.

    • Search Google Scholar
    • Export Citation
  • Leavesley, G. H., R. W. Lichty, B. M. Troutman, and L. G. Saindon, 1983: Precipitation-Runoff Modeling System: User’s manual. U.S. Geological Survey Water-Resources Investigations Rep. 83-4238, 207 pp.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., A. W. Wood, R. N. Palmer, E. F. Wood, and E. Z. Stakhiv, 1999: Water resources implications of global warming: A US regional perspective. Climatic Change, 43, 537579.

    • Search Google Scholar
    • Export Citation
  • Loomis, A., T. Devine, A. Small, B. Howard, B. Richardson, and S. Dulac, 2009: Land use and land conservation in New England: Trends, challenges, and opportunities. M.S. thesis, University of Southern Maine Muskie School of Public Service, 215 pp.

    • Search Google Scholar
    • Export Citation
  • Lougeay, R., 1976: Adjustment of measured precipitation for gage undercatch. J. Appl. Meteor., 15, 10971101.

  • Marshall, E., and T. Randhir, 2008: Effect of climate change on watershed system: A regional analysis. Climatic Change, 89, 263280.

  • Menzel, L., A. H. Thieken, D. Schwandt, and G. Burger, 2006: Impact of climate change on the regional hydrology—Scenario-based modelling studies in the German Rhine catchment. Nat. Hazards, 38, 4561.

    • Search Google Scholar
    • Export Citation
  • Michelson, D. B., 2004: Systematic correction of precipitation gauge observations using analyzed meteorological variables. J. Hydrol., 290, 161177.

    • Search Google Scholar
    • Export Citation
  • Miller, D. R., F. L. Ogden, G. S. Warner, and A. T. DeGaetano, 2002: Precipitation in Connecticut. Connecticut Institute of Water Research Special Rep, 65 pp.

    • Search Google Scholar
    • Export Citation
  • Niemann, J. D., and E. A. B. Eltahir, 2005: Sensitivity of regional hydrology to climate changes, with application to the Illinois River basin. Water Resour. Res., 41, W07014, doi:10.1029/2004WR003893.

    • Search Google Scholar
    • Export Citation
  • Randall, A. D., 1996: Mean annual runoff, precipitation, and evapotranspiration in the glaciated northeastern United States, 1951-1980. U. S. Geological Survey Open-File Rep. 96-395, 1 pp.

    • Search Google Scholar
    • Export Citation
  • Riggs, G. A., D. K. Hall, and V. V. Salomonson, 2006: MODIS snow products user guide to collection 5. NASA Rep., 80 pp. [Available online at http://modis-snow-ice.gsfc.nasa.gov/uploads/sug_c5.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2009: Projected midlatitude continental summer drying: North America versus Europe. J. Climate, 22, 28132833.

  • Salathe, E. P., P. W. Mote, and M. W. Wiley, 2007: Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific Northwest. Int. J. Climatol., 27, 16111621.

    • Search Google Scholar
    • Export Citation
  • Seaber, P. R., F. P. Kapinos, and G. L. Knapp, 1994: Hydrologic unit maps. U.S. Geological Survey Water-Supply Paper 2294, 66 pp.

  • Shabalova, M. V., W. P. A. van Deursen, and T. A. Buishand, 2003: Assessing future discharge of the River Rhine using regional climate model integrations and a hydrological model. Climate Res., 23, 233246.

    • Search Google Scholar
    • Export Citation
  • Solley, W. B., R. R. Pierce, and H. A. Perlman, 1998: Estimated use of water in the United States in 1995. U.S. Geological Survey Circular 1200, 71 pp.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Varis, O., T. Kajander, and R. Lemmela, 2004: Climate and water: From climate models to water resources management and vice versa. Climatic Change, 66, 321344.

    • Search Google Scholar
    • Export Citation
  • Viger, R. J., and G. H. Leavesley, 2007: The GIS Weasel user’s manual. U.S. Geological Survey Techniques and Methods 6-B4, 201 pp.

  • Viger, R. J., L. E. Hay, J. W. Jones, and G. R. Buell, 2010: Effects of including surface depressions in the application of the Precipitation-Runoff Modeling System in the Upper Flint River basin, Georgia. U.S. Geological Survey Scientific Investigation Report, 2010-5062, 36 pp.

    • Search Google Scholar
    • Export Citation
  • Viger, R. J., L. E. Hay, S. L. Markstrom, J. W. Jones, and G. R. Buell, 2011: Hydrologic effects of urbanization and climate change on the Flint River basin, Georgia. Earth Interactions, 15. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Vogelmann, J. E., S. M. Howard, L. M. Yang, C. R. Larson, B. K. Wylie, and N. Van Driel, 2001: Completion of the 1990s National Land Cover Data set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm. Eng. Remote Sens., 67, 650662.

    • Search Google Scholar
    • Export Citation
  • Wenger, S. J., C. H. Luce, A. F. Hamlet, D. J. Isaak, and H. M. Neville, 2010: Macroscale hydrologic modeling of ecologically relevant flow metrics. Water Resour. Res., 46, W09513, doi:10.1029/2009WR008839.

    • Search Google Scholar
    • Export Citation
  • Xu, C. Y., E. Widen, and S. Halldin, 2005: Modelling hydrological consequences of climate change—Progress and challenges. Adv. Atmos. Sci., 22, 789797.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1016 217 48
PDF Downloads 276 82 9