Land-Cover and Surface Water Change Drive Large Albedo Increases in South America

Scott R. Loarie Department of Global Ecology, Carnegie Institution for Science, Stanford, California

Search for other papers by Scott R. Loarie in
Current site
Google Scholar
PubMed
Close
,
David B. Lobell Program on Food Security and the Environment, Stanford University, Stanford, California

Search for other papers by David B. Lobell in
Current site
Google Scholar
PubMed
Close
,
Gregory P. Asner Department of Global Ecology, Carnegie Institution for Science, Stanford, California

Search for other papers by Gregory P. Asner in
Current site
Google Scholar
PubMed
Close
, and
Christopher B. Field Department of Global Ecology, Carnegie Institution for Science, Stanford, California

Search for other papers by Christopher B. Field in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Albedo is an important factor affecting global climate, but uncertainty in the sources and magnitudes of albedo change has led to simplistic treatments of albedo in climate models. Here, the authors examine nine years (2000–08) of historical 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) albedo estimates across South America to advance understanding of the magnitude and sources of large-scale albedo changes. The authors use the magnitude of albedo change from the arc of deforestation along the southeastern edge of the Brazilian Amazon (+2.8%) as a benchmark for comparison. Large albedo increases (>+2.8%) were 2.2 times more prevalent than similar decreases throughout South America. Changes in surface water drove most large albedo changes that were not caused by vegetative cover change. Decreased surface water in the Santa Fe and Buenos Aires regions of Argentina was responsible for albedo increases exceeding that of the arc of deforestation in magnitude and extent. Although variations in the natural flooding regimes were likely the dominant mechanism driving changes in surface water, it is possible that human manipulations through dams and other agriculture infrastructure contributed. This study demonstrates the substantial role that land-cover and surface water change can play in continental-scale albedo trends and suggests ways to better incorporate these processes into global climate models.

+ Corresponding author address: Scott R. Loarie, Department of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305. loarie@stanford.edu

Abstract

Albedo is an important factor affecting global climate, but uncertainty in the sources and magnitudes of albedo change has led to simplistic treatments of albedo in climate models. Here, the authors examine nine years (2000–08) of historical 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) albedo estimates across South America to advance understanding of the magnitude and sources of large-scale albedo changes. The authors use the magnitude of albedo change from the arc of deforestation along the southeastern edge of the Brazilian Amazon (+2.8%) as a benchmark for comparison. Large albedo increases (>+2.8%) were 2.2 times more prevalent than similar decreases throughout South America. Changes in surface water drove most large albedo changes that were not caused by vegetative cover change. Decreased surface water in the Santa Fe and Buenos Aires regions of Argentina was responsible for albedo increases exceeding that of the arc of deforestation in magnitude and extent. Although variations in the natural flooding regimes were likely the dominant mechanism driving changes in surface water, it is possible that human manipulations through dams and other agriculture infrastructure contributed. This study demonstrates the substantial role that land-cover and surface water change can play in continental-scale albedo trends and suggests ways to better incorporate these processes into global climate models.

+ Corresponding author address: Scott R. Loarie, Department of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305. loarie@stanford.edu

Save
  • Antentas, J. M. , 2009: The Madeira River complex: Socio-environmental impact in Bolivian Amazonia and social resistance. Capitalism Nat. Socialism 20 , 1220.

    • Search Google Scholar
    • Export Citation
  • Baldi, G. , M. D. Nosetto , R. Aragón , F. Aversa , J. M. Paruelo , and E. G. Jobbágy , 2008: Long-term satellite NDVI data sets: Evaluating their ability to detect ecosystem functional changes in South America. Sensors 8 , 53975425.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A. , 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408 , 187190.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B. , 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320 , 14441449.

  • Canziani, G. A. , R. M. Ferrati , C. Rossi , and D. Ruiz-Moreno , 2006: The influence of climate and dam construction on the Ibera wetlands, Argentina. Reg. Environ. Change 6 , 181191.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H. , S. N. M. Yanagi , P. J. O. P. Souza , A. Ribeiro , and E. J. P. Rocha , 2007: Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys. Res. Lett. 34 , L07706. doi:10.1029/2007GL029271.

    • Search Google Scholar
    • Export Citation
  • Cresswell, H. P. , D. J. Painter , and K. C. Cameron , 1993: Tillage and water content effects on surface soil hydraulic properties and shortwave albedo. Soil Sci. Soc. Amer. J. 57 , 816816.

    • Search Google Scholar
    • Export Citation
  • Dai, Y. , and Coauthors , 2003: The common land model. Bull. Amer. Meteor. Soc. 84 , 10131023.

  • Feddema, J. J. , K. W. Oleson , G. B. Bonan , L. O. Mearns , L. E. Buja , G. A. Meehl , and W. M. Washington , 2005: The importance of land-cover change in simulating future climates. Science 310 , 16741678.

    • Search Google Scholar
    • Export Citation
  • Hall, D. , and G. Riggs , 2007: Accuracy assessment of the MODIS snow products. Hydrol. Processes 21 , 15341547.

  • Hansen, M. C. , and Coauthors , 2008: Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc. Natl. Acad. Sci. USA 105 , 94399444.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A. , and M. F. Wilson , 1983: Surface albedo data for climatic modeling. Rev. Geophys. 21 , 17431778.

  • INPE , cited. 2009: PRODES: Assessment of deforestation in Brazilian Amazonia. Instituto Nacional de Pesquisas Espaciais. [Available online at http://www.obt.inpe.br/prodes/].

    • Search Google Scholar
    • Export Citation
  • Jin, Y. , C. B. Schaaf , C. E. Woodcock , F. Gao , X. Li , A. H. Strahler , W. Lucht , and S. Liang , 2003: Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res. 108 , 4159. doi:10.1029/2002JD002804.

    • Search Google Scholar
    • Export Citation
  • Kileen, T. J. , 2007: A Perfect Storm in the Amazon Wilderness: Development and Conservation in the Context of the Initiative for the Integration of the Regional Infrastructure of South America (IIRSA). Advances in Applied Biodiversity Science Series, Vol. 7, Center for Applied Biodiversity Science, 102 pp.

    • Search Google Scholar
    • Export Citation
  • Lambin, E. F. , and Coauthors , 2001: The causes of land-use and land-cover change: Moving beyond the myths. Global Environ. Change 11 , 261269.

    • Search Google Scholar
    • Export Citation
  • Liang, S. , and Coauthors , 2002: Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ. 83 , (1–2). 149162.

    • Search Google Scholar
    • Export Citation
  • Loarie, S. R. , L. N. Joppa , and S. L. Pimm , 2007: Satellites miss environmental priorities: A response to Loveland et al. and Kark et al. Trends Ecol. Evol. 23 , 183184.

    • Search Google Scholar
    • Export Citation
  • Loarie, S. R. , G. P. Asner , and C. B. Field , 2009: Boosted carbon emissions from Amazon deforestation. Geophys. Res. Lett. 36 , L14810. doi:10.1029/2009GL037526.

    • Search Google Scholar
    • Export Citation
  • Martinelli, L. A. , and S. Filoso , 2008: Expansion of sugarcane ethanol production in Brazil: Environmental and social challenges. Ecol. Appl. 18 , 885898.

    • Search Google Scholar
    • Export Citation
  • Martínez, G. A. , P. Laterra , and N. Maceira , 2005: Remote sensing assessment of Paspalum quadrifarium grasslands in the Flooding Pampa, Argentina. Rangeland Ecol. Manage. 58 , 406412.

    • Search Google Scholar
    • Export Citation
  • Morton, D. C. , R. S. DeFries , Y. E. Shimabukuro , L. O. Anderson , E. Arai , F. del Bon Espirito-Santo , R. Freitas , and J. Morisette , 2006: Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 103 , 1463714641.

    • Search Google Scholar
    • Export Citation
  • NCDC , cited. 2009: Global hazards and significant events, April 2003. National Climatic Data Center. [Available online at http://www.ncdc.noaa.gov/oa//climate/research/2003/apr/hazards.html].

    • Search Google Scholar
    • Export Citation
  • Nemani, R. R. , and S. W. Running , 1995: Satellite monitoring of global land cover changes and their impact on climate. Climatic Change 31 , 395413.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W. , G. B. Bonan , C. Schaaf , F. Gao , Y. Jin , and A. Strahler , 2003: Assessment of global climate model land surface albedo using MODIS data. Geophys. Res. Lett. 30 , 1443. doi:10.1029/2002GL016749.

    • Search Google Scholar
    • Export Citation
  • Olson, D. M. , and Coauthors , 2001: Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51 , 933938.

  • Otterman, J. , 1977: Anthropogenic impact on the albedo of the Earth. Climatic Change 1 , 137155.

  • Otterman, J. , and C. J. Tucker , 1985: Satellite measurements of surface albedo and temperatures in semi-desert. J. Appl. Meteor. 24 , 228235.

    • Search Google Scholar
    • Export Citation
  • Post, D. F. , A. Fimbres , A. D. Matthias , E. E. Sano , L. Accioly , A. K. Batchily , and L. G. Ferreira , 2000: Predicting soil albedo from soil color and spectral reflectance data. Soil Sci. Soc. Amer. J. 64 , 10271034.

    • Search Google Scholar
    • Export Citation
  • Sicart, J. E. , P. Ribsten , P. Wagnon , and D. Brunstein , 2001: Clear-sky albedo measurements on a sloping glacier surface: A case study in the Bolivian Andes. J. Geophys. Res. 106 , (D23). 3172931737.

    • Search Google Scholar
    • Export Citation
  • Solbrig, O. T. , 1997: Towards a sustainable Pampa agriculture: Past performance and prospective analysis. Harvard University David Rockefeller Center for Latin American Studies Rep., 52 pp. [Available online at http://www.drclas.harvard.edu/files/96-97-6.pdf].

    • Search Google Scholar
    • Export Citation
  • Stanhill, G. , J. T. H. Cox , and S. Moreshet , 1968: The effect of crop and climatic factors on the radiation balance of an irrigated maize crop. J. Appl. Ecol. 5 , 707720.

    • Search Google Scholar
    • Export Citation
  • Tian, Y. , R. E. Dickinson , L. Zhou , R. B. Myneni , M. Friedl , C. B. Schaaf , M. Carroll , and F. Gao , 2004: Land boundary conditions from MODIS data and consequences for the albedo of a climate model. Geophys. Res. Lett. 31 , L05504. doi:10.1029/2003GL019104.

    • Search Google Scholar
    • Export Citation
  • Turner II, B. L. , E. F. Lambin , and A. Reenberg , 2007: The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 104 , 2066620671.

    • Search Google Scholar
    • Export Citation
  • Wang, Z. , X. Zeng , M. Barlage , R. E. Dickinson , F. Gao , and C. B. Schaaf , 2004: Using MODIS BRDF and albedo data to evaluate global model land surface albedo. J. Hydrometeor. 5 , 314.

    • Search Google Scholar
    • Export Citation
  • Wei, X. , A. N. Hahmann , Z. L. Yang , X. Zeng , K. J. Schaudt , R. E. Dickinson , C. B. Schaaf , and N. Strugnell , 2001: Comparison of albedos computed by land surface models and evaluation against remotely sensed data. J. Geophys. Res. 106 , (D18). 2068720701.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A. , T. Wong , N. Loeb , P. Minnis , K. Priestley , and R. Kandel , 2005: Changes in Earth’s albedo measured by satellite. Science 308 , 825.

    • Search Google Scholar
    • Export Citation
  • Xiao, X. , S. Boles , S. Frolking , C. Li , J. Babu , W. Salas , and B. Moore , 2006: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 100 , 95113.

    • Search Google Scholar
    • Export Citation
  • Yang, Z. L. , and R. E. Dickinson , 1996: Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil Moisture Workshop and evaluation of its performance. Global Planet. Change 13 , (1–4). 117134.

    • Search Google Scholar
    • Export Citation
  • Zeng, X. , 2001: Global vegetation root distribution for land modeling. J. Hydrometeor. 2 , 525530.

  • Zeng, X. , M. Shaikh , Y. Dai , R. E. Dickinson , and R. Myneni , 2002: Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate 15 , 18321854.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 832 251 35
PDF Downloads 516 131 12