• Allen, R. G., , S. P. Luis, , D. Raes, , and S. Martin, 1998: Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 174 pp.

  • Allen, R. G., , A. Morse, , M. Tasumi, , W. Bastiaanssen, , W. Kramber & , and H. Anderson 2001: Evapotranspiration from Landsat (SEBAL) for water rights management and compliance with multi-state water compacts. Proc. Int. Geoscience and Remote Sensing Symp., Sydney, Australia, IEEE, Vol. 2, 830–833.

  • Antonić, O., , J. Križan, , A. Marki, , and D. Bukovec, 2001: Spatio-temporal interpolation of climatic variables over large region of complex terrain using neural networks. Ecol. Modell., 138 (1–3), 255263, doi:10.1016/S0304-3800(00)00406-3.

    • Search Google Scholar
    • Export Citation
  • Besaw, L. E., , D. M. Rizzo, , P. R. Bierman, , and W. R. Hackett, 2010: Advances in ungauged streamflow prediction using artificial neural networks. J. Hydrol., 386 (1–4), 2737, doi:10.1016/j.jhydrol.2010.02.037.

    • Search Google Scholar
    • Export Citation
  • Bhattacharya, B. K., , K. Mallick, , N. Padmanabhan, , N. K. Patel, , and J. S. Parihar, 2009: Retrieval of land surface albedo and temperature using data from the Indian geostationary satellite: A case study for the winter months. Int. J. Remote Sens., 30, 32393257, doi:10.1080/01431160802559061.

    • Search Google Scholar
    • Export Citation
  • Bokar, J. C., 1999: The estimation of spatially varying albedo and optical thickness in a radiating slab using artificial neural networks. Int. Commun. Heat Mass Transfer, 26, 359367, doi:10.1016/S0735-1933(99)00022-6.

    • Search Google Scholar
    • Export Citation
  • Cerdeña, A., , A. González, , and J. C. Pérez, 2007: Remote sensing of water cloud parameters using neural networks. J. Atmos. Oceanic Technol., 24, 5263.

    • Search Google Scholar
    • Export Citation
  • Cigizoglu, H. K., 2005: Generalized regression neural network in monthly flow forecasting. Civ. Eng. Environ. Syst., 22, 7181, doi:10.1080/10286600500126256.

    • Search Google Scholar
    • Export Citation
  • Clark, R. N., , G. A. Swayze, , A. Gallagher, , T. V. V. King, , and W. M. Calvin, 1993: The U.S. Geological Survey Digital Spectral Library: Version 1: 0.2 to 3.0 μm. U.S. Geological Survey Open File Rep. 93-592, 1326 pp.

  • Dickinson, R. E., 1983: Land surface processes and climate—Surface albedos and energy balance. Adv. Geophys., 25, 305353, doi:10.1016/S0065-2687(08)60176-4.

    • Search Google Scholar
    • Export Citation
  • Doughty, C. E., , S. R. Loarie, , and C. B. Field, 2012: Theoretical impact of changing albedo on precipitation at the southernmost boundary of the ITCZ in South America. Earth Interact., 16 . [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • ERSDAC, cited 2010: Earth Remote Sensing Data Analysis Center. [Available online at http://gds.aster.ersdac.jspacesystems.or.jp/gds_www2002/news20100312_e.html.]

  • French, M. N., , W. F. Krajewski, , and R. R. Cuykendall, 1992: Rainfall forecasting in space and time using a neural network. J. Hydrol., 137 (1–4), 131, doi:10.1016/0022-1694(92)90046-X.

    • Search Google Scholar
    • Export Citation
  • Gowda, P. H., , J. L. Chavez, , P. D. Colaizzi, , S. R. Evett, , T. A. Howell, , and J. A. Tolk, 2007: Remote sensing based energy balance algorithms for mapping ET: Current status and future challenges. Trans. ASABE, 50, 16391644.

    • Search Google Scholar
    • Export Citation
  • Haykin, S., Ed., 1999: Neural Networks: A Comprehensive Foundation. 2nd ed. Prentice-Hall, 842 pp.

  • Hipps, L. E., , G. Asrar, , and E. T. Kanemasu, 1985: A theoretically-based normalization of environmental effects on foliage temperature. Agric. For. Meteor., 35, 113122, doi:10.1016/0168-1923(85)90078-4.

    • Search Google Scholar
    • Export Citation
  • Jain, A., , K. P. Sudheer, , and S. Srinivasulu, 2004: Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Processes, 18, 571581, doi:10.1002/hyp.5502.

    • Search Google Scholar
    • Export Citation
  • Jain, S. K., , P. C. Nayak, , and K. P. Sudheer, 2008: Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrol. Processes, 22, 22252234, doi:10.1002/hyp.6819.

    • Search Google Scholar
    • Export Citation
  • Jeong, D.-I., , and Y.-O. Kim, 2005: Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol. Processes, 19, 38193835, doi:10.1002/hyp.5983.

    • Search Google Scholar
    • Export Citation
  • Key, J., 1996: The Cloud and Surface Parameter Retrieval (CASPR) system for polar AVHRR, version 1.0: User’s guide. Boston University, 73 pp.

  • Kimes, D. S., , and P. J. Sellers, 1985: Inferring hemispherical reflectance of the earth’s surface for global energy budgets from remotely sensed nadir or directional radiance values. Remote Sens. Environ., 18, 205223, doi:10.1016/0034-4257(85)90058-6.

    • Search Google Scholar
    • Export Citation
  • Kisi, O., 2006: Evapotranspiration estimation using feed-forward neural networks. Nord. Hydrol., 37, 247260, doi:10.2166/nh.2006.010.

    • Search Google Scholar
    • Export Citation
  • Kisi, O., 2007: Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol. Processes, 21, 19251934, doi:10.1002/hyp.6403.

    • Search Google Scholar
    • Export Citation
  • Kisi, O., 2008: The potential of different ANN techniques in evapotranspiration modelling. Hydrol. Processes, 22, 24492460, doi:10.1002/hyp.6837.

    • Search Google Scholar
    • Export Citation
  • Kisi, O., , and A. Guven, 2010: Evapotranspiration modeling using linear genetic programming technique. J. Irrig. Drain. Eng., 136, 715723, doi:10.1061/(ASCE)IR.1943-4774.0000244.

    • Search Google Scholar
    • Export Citation
  • Kohavi, R. A., 1995: Study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. 14th Int. Joint Conf. on Artificial Intelligence, Montreal, Canada, American Association for Artificial Intelligence, 1137–1143.

  • Konno, H., , and Y. Takaya, 2008: Multi-step methods for choosing the best set of variables in regression analysis. Comput. Optim. Appl., 46, 417426, doi:10.1007/s10589-008-9193-6.

    • Search Google Scholar
    • Export Citation
  • Krose, B.,, and P. Van der Smagt, Eds., 1996: An Introduction to Neural Networks. 8th ed. University of Amsterdam, 135 pp.

  • Kucuk, N., 2008: Modeling of gamma-ray energy absorption buildup factors using neural network. Ann. Nucl. Energy, 35, 17871790, doi:10.1016/j.anucene.2008.05.005.

    • Search Google Scholar
    • Export Citation
  • Kumar, M., , N. S. Raghuwanshi, , and R. Singh, 2010: Artificial neural networks approach in evapotranspiration modeling: A review. Irrig. Sci., 29, 1125, doi:10.1007/s00271-010-0230-8.

    • Search Google Scholar
    • Export Citation
  • Landeras, G., , A. Ortiz-Barredo, , and J. J. Lopez, 2009: Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J. Irrig. Drain. Eng., 135, 323334, doi:10.1061/(ASCE)IR.1943-4774.0000008.

    • Search Google Scholar
    • Export Citation
  • Liang, S., 2001: Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ., 76, 213238, doi:10.1016/S0034-4257(00)00205-4.

    • Search Google Scholar
    • Export Citation
  • Liang, S., 2003: A direct algorithm for estimating land surface broadband albedos from MODIS imagery. IEEE Trans. Geosci. Remote Sens., 41, 136145, doi:10.1109/tgrs.2002.807751.

    • Search Google Scholar
    • Export Citation
  • Liang, S., Ed., 2004: Quantitative Remote Sensing of Land Surfaces. Wiley, 560 pp.

  • Liang, S., , H. Strahler, , and C. Walthall, 1999: Retrieval of land surface albedo from satellite observations: A simulation study. J. Appl. Meteor., 38, 712725.

    • Search Google Scholar
    • Export Citation
  • Liang, S., , C. J. Shuey, , A. L. Russ, , H. Fang, , M. Chen, , C. L. Walthall, , C. S. T. Daughtry, , and R. Hunt Jr., 2002: Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ., 84, 2541, doi:10.1016/S0034-4257(02)00068-8.

    • Search Google Scholar
    • Export Citation
  • Loarie, S. R., , D. B. Lobell, , G. P. Asner, , and C. B. Field, 2010: Land-cover and surface water change drive large albedo increases in South America. Earth Interact., 15. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Marquardt, D. W., 1963: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11, 431441, doi:10.1137/0111030.

    • Search Google Scholar
    • Export Citation
  • Martí, P., , P. González-Altozano, , and M. Gasque, 2011: Reference evapotranspiration estimation without local climatic data. Irrig. Sci., 29, 479495, doi:10.1007/s00271-010-0243-3.

    • Search Google Scholar
    • Export Citation
  • Minns, A. W., , and M. J. Hall, 1996: Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J., 41, 399417.

  • Pallant, J., Ed., 2007: SPSS Survival Manual: A Step by Step Guide to Data Analysis using SPSS for Windows. 3rd ed. McGraw-Hill, 352 pp.

  • Pinker, R. T., , and L. L. Stowe, 1990: Modelling planetary bidirectional reflectance over land. Int. J. Remote Sens., 11, 113123, doi:10.1080/01431169008955003.

    • Search Google Scholar
    • Export Citation
  • Rahimi Khoob, A., 2008: Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig. Sci., 26, 253259, doi:10.1007/s00271-007-0090-z.

    • Search Google Scholar
    • Export Citation
  • Rahimi Khoob, A., 2009: Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theor. Appl. Climatol., 101, 8391, doi:10.1007/s00704-009-0204-z.

    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., , S. Yang, , C. Gautier, , and D. Sowle, 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull. Amer. Meteor. Soc., 79, 21012114.

    • Search Google Scholar
    • Export Citation
  • Salisbury, J. W., , L. S. Walter, , N. Vergo, , and D. M. D’Aria, 1991: Infrared (2.1-25 μm) Spectra of Minerals Johns Hopkins University Press, 267 pp.

  • Sarwar, A., , and R. Bill, 2007: Mapping evapotranspiration in the Indus basin using ASTER data. Int. J. Remote Sens., 28, 50375046, doi:10.1080/01431160600954654.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83 (1–2), 135148, doi:10.1016/S0034-4257(02)00091-3.

    • Search Google Scholar
    • Export Citation
  • Senkal, O., , and T. Kuleli, 2009: Estimation of solar radiation over Turkey using artificial neural network and satellite data. Appl. Energy, 86 (7–8), 12221228.

    • Search Google Scholar
    • Export Citation
  • Strobl, R. O., , and F. Forte, 2007: Artificial neural network exploration of the influential factors in drainage network derivation. Hydrol. Processes, 21, 29652978, doi:10.1002/hyp.6506.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , A. Nolin, , and K. Steffen, 1997: Comparison of AVHRR-derived and in situ surface albedo over the Greenland ice sheet. Remote Sens. Environ., 62, 262276, doi:10.1016/S0034-4257(97)00107-7.

    • Search Google Scholar
    • Export Citation
  • Tabachnick, B. G., , and L. S. Fidell, Eds., 2007: Using Multivariate Statistics. 5th ed. Pearson Education, 980 pp.

  • Thome, K., , F. Palluconi, , T. Takashima, , and K. Masuda, 1998: Atmospheric correction of ASTER. IEEE Trans. Geosci. Remote Sens., 36, 11991211, doi:10.1109/36.701026.

    • Search Google Scholar
    • Export Citation
  • Valiente, J., , M. Nunez, , E. Lopez-Baeza, , and J. Moreno, 1995: Narrow-band to broad-band conversion for Meteosat-visible channel and broad-band albedo using both AVHRR-1 and -2 channels. Int. J. Remote Sens., 16, 11471166.

    • Search Google Scholar
    • Export Citation
  • Van Der Kwast, J., , W. Timmermans, , A. Gieske, , Z. Su, , A. Olioso, , L. Jia, , J. Elbers, , D. Karssenberg, , and S. De Jong, 2009: Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain). Hydrol. Earth Syst. Sci., 13, 13371347, doi:10.5194/hess-13-1337-2009.

    • Search Google Scholar
    • Export Citation
  • Yang, C.-C., , C. S. Tan, , and S. O. Prasher, 2000: Artificial neural networks for subsurface drainage and subirrigation systems in Ontario, Canada. J. Amer. Water Resour. Assoc., 36, 609618, doi:10.1111/j.1752-1688.2000.tb04291.x.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., , B. Eddy Patuwo, , and M. Y. Hu, 1998: Forecasting with artificial neural networks: The state of the art. Int. J. Forecast., 14, 3562, doi:10.1016/S0169-2070(97)00044-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 10
PDF Downloads 74 74 3

Neural Network and Multiple Linear Regression for Estimating Surface Albedo from ASTER Visible and Near-Infrared Spectral Bands

View More View Less
  • 1 Department of Remote Sensing, Faculty of Geo-Information and Real Estate, University Technology of Malaysia, Johor Bahru, Malaysia, and Faculty of Natural Resources, Yazd University, Yazd, Iran
  • | 2 Department of Remote Sensing, Faculty of Geo-Information and Real Estate, University Technology of Malaysia, Johor Bahru, Malaysia
  • | 3 Faculty of Science, Yazd University, Yazd, Iran
  • | 4 Process System Engineering Center (PROSPECT), University Technology of Malaysia, Johor Bahru, Malaysia
  • | 5 Faculty of Chemical Engineering, University Technology of Malaysia, Johor Bahru, Malaysia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The current Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-based broadband albedo model requires shortwave infrared bands 5 (2.145–2.185 nm), 6 (2.185–2.225 nm), 8 (2.295–2.365 nm), and 9 (2.360–2.430 nm) and visible/near-infrared bands 1 (0.52–0.60 nm) and 3 (0.78–0.86 nm). However, because of sensor irregularities at high temperatures, shortwave infrared wavelengths are not recorded in the ASTER data acquired after April 2008. Therefore, this study seeks to evaluate the performance of artificial neural networks (ANN) in estimating surface albedo using visible/near-infrared bands available in the data obtained after April 2008. It also compares the outcomes with the results of multiple linear regression (MLR) modeling. First, the most influential spectral bands used in the current model as well as band 2 (0.63–0.69 nm) (which is also available after April 2008 in the visible/near-infrared part) were determined by a primary analysis of the data acquired before April 2008. Then, multiple linear regression and ANN models were developed by using bands with a relatively high level of contribution. The results showed that bands 1 and 3 were the most important spectral ones for estimating albedo where land cover consisted of soil and vegetation. These two bands were used as the study input, and the albedo (estimated through a model that utilized bands 1, 3, 5, 6, 8, and 9) served as a target to remodel albedo. Because of its high collinearity with band 1, band 2 was identified less effectively by MLR as well as ANN. The study confirmed that a combination of bands 1 and 3, which are available in the current ASTER data, could be modeled through ANN and MLR to estimate surface albedo. However, because of its higher accuracy, ANN method was superior to MLR in developing objective functions.

Corresponding author address: Mohammad H. Mokhtari, Department of Remote Sensing, Faculty of Geo-Information and Real Estate, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia. E-mail address: mokhtari.mh@gmail.com

Abstract

The current Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-based broadband albedo model requires shortwave infrared bands 5 (2.145–2.185 nm), 6 (2.185–2.225 nm), 8 (2.295–2.365 nm), and 9 (2.360–2.430 nm) and visible/near-infrared bands 1 (0.52–0.60 nm) and 3 (0.78–0.86 nm). However, because of sensor irregularities at high temperatures, shortwave infrared wavelengths are not recorded in the ASTER data acquired after April 2008. Therefore, this study seeks to evaluate the performance of artificial neural networks (ANN) in estimating surface albedo using visible/near-infrared bands available in the data obtained after April 2008. It also compares the outcomes with the results of multiple linear regression (MLR) modeling. First, the most influential spectral bands used in the current model as well as band 2 (0.63–0.69 nm) (which is also available after April 2008 in the visible/near-infrared part) were determined by a primary analysis of the data acquired before April 2008. Then, multiple linear regression and ANN models were developed by using bands with a relatively high level of contribution. The results showed that bands 1 and 3 were the most important spectral ones for estimating albedo where land cover consisted of soil and vegetation. These two bands were used as the study input, and the albedo (estimated through a model that utilized bands 1, 3, 5, 6, 8, and 9) served as a target to remodel albedo. Because of its high collinearity with band 1, band 2 was identified less effectively by MLR as well as ANN. The study confirmed that a combination of bands 1 and 3, which are available in the current ASTER data, could be modeled through ANN and MLR to estimate surface albedo. However, because of its higher accuracy, ANN method was superior to MLR in developing objective functions.

Corresponding author address: Mohammad H. Mokhtari, Department of Remote Sensing, Faculty of Geo-Information and Real Estate, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia. E-mail address: mokhtari.mh@gmail.com
Save