• Arnold, T. W., E. K. Fritzell, and F. R. Tzell, 1990: Habitat use by male mink in relation to wetland characteristics and avian prey abundance. Can. J. Zool., 68, 22052208, doi:10.1139/z90-306.

    • Search Google Scholar
    • Export Citation
  • Badiou, P., R. McDougal, D. Pennock, and B. Clark, 2011: Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian Prairie Pothole Region. Wetlands Ecol. Manage., 19, 237256, doi:10.1007/s11273-011-9214-6.

    • Search Google Scholar
    • Export Citation
  • Batt, B. D. J., M. G. Anderson, C. D. Anderson, and F. D. Caswell, 1989: The use of prairie potholes by North American ducks. Northern Prairie Wetlands, A. van der Valke, Ed., Iowa State University Press, 204–227.

  • Carver, E., 2006: Economic impact of waterfowl hunting in the United States. U.S. Department of the Interior Fish and Wildlife Service Tech. Rep., 13 pp.

  • Dahl, T. E., 1990: Wetland losses in the United States 1780s to 1980s. U.S. Department of the Interior Fish and Wildlife Service Tech. Rep., 13 pp.

  • Gleason, R. A., N. H. Euliss, B. A. Tangen, and M. K. Laubhan, 2011: USDA conservation program and practice effects on wetland ecosystem services in the Prairie Pothole Region. Ecol. Appl., 21, S65S81, doi:10.1890/09-0216.1.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. R., K. F. Higgins, M. L. Kjellsen, and C. R. Elliot, 1997: Eastern South Dakota wetlands. South Dakota State University Tech. Rep., 28 pp.

  • Johnson, R. R., F. T. Oslund, and D. R. Hertel, 2008: The past, present and future of prairie potholes in the United States. J. Soil Water Conserv., 63, 84A87A, doi:10.2489/jswc.63.3.84A.

    • Search Google Scholar
    • Export Citation
  • Johnson, W. C., B. Millett, T. Gilmanov, A. Richard, G. R. Guntenspergen, and D. E. Naugle, 2005: Vulnerability of northern prairie wetlands to climate change. Bioscience, 55, 863872, doi:10.1641/0006-3568(2005)055[0863:VONPWT]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, W. C., and Coauthors, 2010: Prairie wetland complexes as landscape functional units in a changing climate. Bioscience, 60, 128140, doi:10.1525/bio.2010.60.2.7.

    • Search Google Scholar
    • Export Citation
  • Johnston, C., 2013: Wetland losses due to row crop expansion in the Dakota Prairie Pothole Region. Wetlands, 33, 175182, doi:10.1007/s13157-012-0365-x.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature: 1856-1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, doi:10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krapu, G. L., P. J. Pietz, D. A. Brandt, and R. R. Cox, 2000: Factors limiting mallard brood survival in prairie pothole landscapes. J. Wildl. Manage., 64, 553561, doi:10.2307/3803253.

    • Search Google Scholar
    • Export Citation
  • Krapu, G. L., P. J. Pietz, D. A. Brandt, and R. R. Cox, 2004: Does presence of permanent fresh water affect recruitment in prairie-nesting dabbling ducks? J. Wildl. Manage., 68, 332341, doi:10.2193/0022-541X(2004)068[0332:DPOPFW]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krapu, G. L., P. J. Pietz, D. A. Brandt, and R. R. Cox, 2006: Mallard brood movements, wetland use, and duckling survival during and following a prairie drought. J. Wildl. Manage., 70, 14361444, doi:10.2193/0022-541X(2006)70[1436:MBMWUA]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11, 32953308, doi:10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Labaugh, J. W., T. C. Winter, G. A. Swanson, D. O. Rosenberry, R. D. Nelson, and N. H. Euliss, 1996: Changes in atmospheric circulation patterns affect mid-continent wetlands sensitive to climate. Limnol. Oceanogr., 41, 864870, doi:10.4319/lo.1996.41.5.0864.

    • Search Google Scholar
    • Export Citation
  • Larson, D., 1995: Effects of climate on numbers of northern prairie wetlands. Climatic Change, 30, 169180, doi:10.1007/BF01091840.

  • Millett, B., W. C. Johnson, and G. Guntenspergen, 2009: Climate trends of the North America Prairie Pothole Region 1906-2000. Climatic Change, 93, 243267, doi:10.1007/s10584-008-9543-5.

    • Search Google Scholar
    • Export Citation
  • Niemuth, N., and J. Solberg, 2003: Response of waterbirds to number of wetlands in the Prairie Pothole Region of North Dakota, U.S.A. Waterbirds, 26, 233238, doi:10.1675/1524-4695(2003)026[0233:ROWTNO]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Preston, T. M., T. L. Chesley-Preston, and J. M. Thamke, 2014: A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana. Sci. Total Environ., 472, 11521162, doi:10.1016/j.scitotenv.2013.09.027.

    • Search Google Scholar
    • Export Citation
  • Raven, G. H., L. M. Armstrong, D. W. Howerter, and T. W. Arnold, 2007: Wetland selection by mallard broods in Canada’s prairie-parklands. J. Wildl. Manage., 71, 25272531, doi:10.2193/2004-022.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 0.5°: Monthly land surface precipitation from rain gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, doi:10.5676/DWD_GPCC/FD_M_V6_050.

  • Seager, R., and M. P. Hoerling, 2014: Atmosphere and ocean origins of North American drought. J. Climate, 27, 4581–4606, doi:10.1175/JCLI-D-13-00329.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. Ting, H. P. Huang, and J. Velez, 2005: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 15011527, doi:10.1256/qj.04.96.

    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Ting, C. Li, N. Naik, B. Cook, J. Nakamura, and H. Liu, 2013: Projections of declining surface water availability for the southwestern U.S. Nat. Climate Change, 3, 482486, doi:10.1038/nclimate1787.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2014: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, doi:10.1175/JCLI-D-14-00153.1, in press.

    • Search Google Scholar
    • Export Citation
  • Shaw, S. P., and G. Fredine, 1956: Wetlands of the United States—Their extent and their value to waterfowl and other wildlife. U.S. Department of the Interior Circular 39, 67 pp.

  • Smith, G. W., 1995: A critical review of the aerial and ground surveys of breeding waterfowl in North America. U.S. Department of the Interior National Biological Science Rep. 5, 261 pp.

  • Sorenson, L., R. Goldberg, T. Root, and M. Anderson, 1998: Potential effects of global warming on waterfowl populations breeding in the northern Great Plains. Climatic Change, 40, 343369, doi:10.1023/A:1005441608819.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, doi:10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • USFWS/CWS, 1987: Standard operating procedures for aerial waterfowl breeding ground population and habitat surveys in North America. U.S. Fish and Wildlife Service and Canadian Wildlife Service, 108 pp.

  • van der Schrier, G., J. Barichivich, K. R. Briffa, and P. D. Jones, 2013: A scPDSI-based global data set of dry and wet spells for 1901-2009. J. Geophys. Res., 118, 40254028, doi:10.1002/jgrd.50355.

    • Search Google Scholar
    • Export Citation
  • Vecchia, A. V., 2008: Climate simulation and flood risk analysis for 2008-40 for Devil’s Lake, North Dakota. U.S. Geologic Survey Scientific Investigations Rep. 2008-5011, 30 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 218 13
PDF Downloads 303 165 11

Hydroclimate Variability and Change in the Prairie Pothole Region, the “Duck Factory” of North America

View More View Less
  • 1 Duke University, Durham, North Carolina
  • | 2 Lamont Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 3 NASA Goddard Institute for Space Studies, New York, New York
  • | 4 ** NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 5 Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado
Restricted access

Abstract

The Prairie Pothole Region (PPR) of the northern Great Plains is a vital ecosystem responsible each year for producing 50%–80% of new recruits to the North American duck population. Climate variability and change can impact the hydrology and ecology of the region with implications for waterfowl populations. The historical relationship between PPR wetlands, duck populations, and seasonal hydroclimate are explored. Model experiments from phase 5 of the Coupled Model Intercomparison Project are used to determine whether a recent wetting trend is due to natural variability or changing climate and how PPR hydroclimate will change into the future. Year-to-year variations in May duck populations, pond numbers, and the Palmer drought severity index are well correlated over past decades. Pond and duck numbers tend to increase in spring following La Niña events, but the correlation is not strong. Model simulations suggest that the strengthening of the precipitation gradient across the PPR over the past century is predominantly due to natural variability and therefore could reverse. Model projections of future climate indicate precipitation will increase across the PPR in all seasons except summer, but this gain for surface moisture is largely offset by increased evapotranspiration because of higher temperatures and increased atmospheric evaporative demand. In summer, the combined effects of warming and precipitation changes indicate seasonal surface drying in the future. The presented hydroclimate analyses produce potential inputs to ecological and hydrological simulations of PPR wetlands to inform risk analysis of how this North American waterfowl habitat will evolve in the future, providing guidance to land managers facing conservation decisions.

Lamont Doherty Earth Observatory Contribution Number 7818.

Corresponding author address: Richard Seager, Lamont Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail address: seager@ldeo.columbia.edu

Abstract

The Prairie Pothole Region (PPR) of the northern Great Plains is a vital ecosystem responsible each year for producing 50%–80% of new recruits to the North American duck population. Climate variability and change can impact the hydrology and ecology of the region with implications for waterfowl populations. The historical relationship between PPR wetlands, duck populations, and seasonal hydroclimate are explored. Model experiments from phase 5 of the Coupled Model Intercomparison Project are used to determine whether a recent wetting trend is due to natural variability or changing climate and how PPR hydroclimate will change into the future. Year-to-year variations in May duck populations, pond numbers, and the Palmer drought severity index are well correlated over past decades. Pond and duck numbers tend to increase in spring following La Niña events, but the correlation is not strong. Model simulations suggest that the strengthening of the precipitation gradient across the PPR over the past century is predominantly due to natural variability and therefore could reverse. Model projections of future climate indicate precipitation will increase across the PPR in all seasons except summer, but this gain for surface moisture is largely offset by increased evapotranspiration because of higher temperatures and increased atmospheric evaporative demand. In summer, the combined effects of warming and precipitation changes indicate seasonal surface drying in the future. The presented hydroclimate analyses produce potential inputs to ecological and hydrological simulations of PPR wetlands to inform risk analysis of how this North American waterfowl habitat will evolve in the future, providing guidance to land managers facing conservation decisions.

Lamont Doherty Earth Observatory Contribution Number 7818.

Corresponding author address: Richard Seager, Lamont Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail address: seager@ldeo.columbia.edu
Save