• Balshi, M. S., , A. D. McGuire, , P. Duffy, , M. D. Flannigan, , J. Walsh, , and J. M. Melillo, 2009: Assessing the response of area burned to changing climate in western boreal North America using a multivariate adaptive regression splines (MARS) approach. Global Change Biol., 15, 578600, doi:10.1111/j.1365-2486.2008.01679.x.

    • Search Google Scholar
    • Export Citation
  • Calef, M. P., 2010: Recent climate change impacts on the boreal forest of Alaska. Geogr. Compass, 4, 6790, doi:10.1111/j.1749-8198.2010.00310.x.

    • Search Google Scholar
    • Export Citation
  • Calef, M. P., , A. D. McGuire, , H. E. Epstein, , T. S. Rupp, , and H. H. Shugart, 2005: Analysis of vegetation distribution in Interior Alaska and sensitivity to climate change using a logistic regression approach. J. Biogeogr., 32, 863878, doi:10.1111/j.1365-2699.2004.01185.x.

    • Search Google Scholar
    • Export Citation
  • Calef, M. P., , A. D. McGuire, , and F. S. Chapin III, 2008: Human influences on wildfire in Alaska from 1988 through 2005: An analysis of the spatial patterns of human impacts. Earth Interact., 12, doi:10.1175/2007EI220.1.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., , T. S. Rupp, , A. M. Starfield, , L. DeWilde, , E. S. Zavaleta, , N. Fresco, , J. Henkelman, , and A. D. McGuire, 2003: Planning for resilience: Modeling change in human-fire interactions in the Alaskan boreal forest. Front. Ecol. Environ., 1, 255261, doi:10.1890/1540-9295(2003)001[0255:PFRMCI]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cumming, S. G., 2005: Effective fire suppression in boreal forests. Can. J. For. Res., 35, 772786, doi:10.1139/x04-174.

  • DeWilde, L., , and F. S. I. Chapin, 2006: Human impacts on the fire regime of Interior Alaska: Interactions among fuels, ignition sources, and fire suppression. Ecosystems, 9, 13421353, doi:10.1007/s10021-006-0095-0.

    • Search Google Scholar
    • Export Citation
  • Dissing, D., , and D. L. Verbyla, 2003: Spatial patterns of lightning strikes in Interior Alaska and their relations to elevation and vegetation. Can. J. For. Res., 33, 770782, doi:10.1139/x02-214.

    • Search Google Scholar
    • Export Citation
  • Drury, S. A., , and P. J. Grissom, 2008: Fire history and fire management implications in the Yukon Flats National Wildlife Refuge, Interior Alaska. For. Ecol. Manage., 256, 304312, doi:10.1016/j.foreco.2008.04.040.

    • Search Google Scholar
    • Export Citation
  • Duffy, P., , J. E. Walsh, , D. H. Mann, , J. M. Graham, , and T. S. Rupp, 2005: Impacts of large-scale atmospheric–ocean variability on Alaskan fire season severity. Ecol. Appl., 15, 13171330, doi:10.1890/04-0739.

    • Search Google Scholar
    • Export Citation
  • Fletcher, D., , D. Mackenzie, , and E. Villouta, 2005: Modeling skewed data with many zeros: A simple approach combining ordinary and logistic regression. Environ. Ecol. Stat., 12, 4554, doi:10.1007/s10651-005-6817-1.

    • Search Google Scholar
    • Export Citation
  • Fox, J. D., 2008: Applied Regression Analysis and Generalized Linear Models. SAGE, 665 pp.

  • Gallant, A. L., , E. F. Binnian, , J. M. Omernik, , and M. B. Shasby, 1995: Ecoregions of Alaska. USGS Professional Paper 1567, 73 pp.

  • Hartmann, B., , and G. Wendler, 2005: The significance of the 1976 Pacific climate shift in the climatology of Alaska. J. Climate, 18, 48244839, doi:10.1175/JCLI3532.1.

    • Search Google Scholar
    • Export Citation
  • Hess, J. C., , C. A. Scott, , G. L. Hufford, , and M. D. Fleming, 2001: El Niño and its impact on fire weather conditions in Alaska. Int. J. Wildland Fire, 10, 113, doi:10.1071/WF01007.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. A., , K. Miyanishi, , and S. R. Bridge, 2001: Wildfire regime in the boreal forest and the idea of suppression and fuel buildup. Conserv. Biol., 15, 15541557, doi:10.1046/j.1523-1739.2001.01005.x.

    • Search Google Scholar
    • Export Citation
  • Kasischke, D. W., , D. Williams, , and D. Barry, 2002: Analysis of patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire, 11, 131144, doi:10.1071/WF02023.

    • Search Google Scholar
    • Export Citation
  • Kasischke, E. S., , and M. R. Turetsky, 2006: Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett.,33, L09703, doi:10.1029/2006GL025677.

  • Kasischke, E. S., and et al. , 2010: Alaska’s changing fire regime—Implications for the vulnerability of its boreal forests. Can. J. For. Res., 40, 13131324, doi:10.1139/X10-098.

    • Search Google Scholar
    • Export Citation
  • Kovacs, K., , K. J. Ranson, , G. Sun, , and V. I. Kharuk, 2004: The relationship of the Terra MODIS fire product and anthropogenic features in the central Siberian landscape. Earth Interact., 8, doi:10.1175/1087-3562(2004)8<1:TROTTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krawchuk, M. A., , S. G. Cumming, , and R. W. Wein, 2006: Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. Ecology, 87, 458468, doi:10.1890/05-1021.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markon, C. J., , S. F. Trainor, , and F. S. Chapin III, 2012: The United States National Climate Assessment—Alaska technical region report. U.S. Department of the Interior/USGS Circular 1379, 148 pp.

  • Miyanishi, K., , and E. A. Johnson, 2001: Comment—A re-examination of the effects of fire suppression in the boreal forest. Can. J. For. Res., 31, 14621466, doi:10.1139/x01-073.

    • Search Google Scholar
    • Export Citation
  • Rupp, T. S., , A. M. Starfield, , F. S. I. Chapin, , and P. Duffy, 2002: Modeling the impact of black spruce on the fire regime of Alaskan boreal forest. Climatic Change, 55, 213233, doi:10.1023/A:1020247405652.

    • Search Google Scholar
    • Export Citation
  • Shulski, M., , and G. Wendler, 2007: Climate of Alaska.University of Alaska Press, 216 pp.

  • Soja, A. J., and et al. , 2007: Climate-induced boreal forest change: Predictions versus current observations. Global Planet. Change, 56, 274296, doi:10.1016/j.gloplacha.2006.07.028.

    • Search Google Scholar
    • Export Citation
  • Todd, S. K., , and H. A. Jewkes, 2006: Wildland fire in Alaska: A history of organized fire suppression and management in the last frontier. Agricultural and Forestry Experiment Station Bulletin 114, University of Alaska Fairbanks, 63 pp. [Available online at http://www.uaf.edu/files/snre/B114.pdf.]

  • Ward, P. C., , A. G. Tithecott, , and B. M. Wotton, 2001: Reply—A re-examination of the effects of fire suppression in the boreal forest. Can. J. For. Res., 31, 14671480, doi:10.1139/x01-074.

    • Search Google Scholar
    • Export Citation
  • Wendler, G., , and M. Shulski, 2009: A century of climate change for Fairbanks, Alaska. Arctic, 62, 295300, doi:10.14430/arctic149.

  • Wotton, B. M., , C. A. Nock, , and M. D. Flannigan, 2010: Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire, 19, 253271, doi:10.1071/WF09002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 114 12
PDF Downloads 75 75 10

Recent Changes in Annual Area Burned in Interior Alaska: The Impact of Fire Management

View More View Less
  • 1 Soka University of America, Aliso Viejo, California
  • | 2 USGS Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, Alaska
  • | 3 Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska
  • | 4 University at Albany, State University of New York, Albany, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Alaskan boreal forest is characterized by frequent extensive wildfires whose spatial extent has been mapped for the past 70 years. Simple predictions based on this record indicate that area burned will increase as a response to climate warming in Alaska. However, two additional factors have affected the area burned in this time record: the Pacific decadal oscillation (PDO) switched from cool and moist to warm and dry in the late 1970s and the Alaska Fire Service instituted a fire suppression policy in the late 1980s. In this paper a geographic information system (GIS) is used in combination with statistical analyses to reevaluate the changes in area burned through time in Alaska considering both the influence of the PDO and fire management. The authors found that the area burned has increased since the PDO switch and that fire management drastically decreased the area burned in highly suppressed zones. However, the temporal analysis of this study shows that the area burned is increasing more rapidly in suppressed zones than in the unsuppressed zone since the late 1980s. These results indicate that fire policies as well as regional climate patterns are important as large-scale controls on fires over time and across the Alaskan boreal forest.

Corresponding author address: M. P. Calef, Soka University of America, 1 University Drive, Aliso Viejo, CA 92656. E-mail address: mcalef@soka.edu

Abstract

The Alaskan boreal forest is characterized by frequent extensive wildfires whose spatial extent has been mapped for the past 70 years. Simple predictions based on this record indicate that area burned will increase as a response to climate warming in Alaska. However, two additional factors have affected the area burned in this time record: the Pacific decadal oscillation (PDO) switched from cool and moist to warm and dry in the late 1970s and the Alaska Fire Service instituted a fire suppression policy in the late 1980s. In this paper a geographic information system (GIS) is used in combination with statistical analyses to reevaluate the changes in area burned through time in Alaska considering both the influence of the PDO and fire management. The authors found that the area burned has increased since the PDO switch and that fire management drastically decreased the area burned in highly suppressed zones. However, the temporal analysis of this study shows that the area burned is increasing more rapidly in suppressed zones than in the unsuppressed zone since the late 1980s. These results indicate that fire policies as well as regional climate patterns are important as large-scale controls on fires over time and across the Alaskan boreal forest.

Corresponding author address: M. P. Calef, Soka University of America, 1 University Drive, Aliso Viejo, CA 92656. E-mail address: mcalef@soka.edu
Save