• Abatzoglou, J. T., and T. J. Brown, 2012: A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol., 32, 772780, doi:10.1002/joc.2312.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., I. A. Walter, R. Elliott, T. Howell, D. Itenfisu, and M. Jensen, 2005: The ASCE Standardized Reference Evapotranspiration Equation.American Society of Civil Engineers, 59 pp.

  • Anandhi, A., A. Frei, D. C. Pierson, E. M. Schneiderman, M. S. Zion, D. Lounsbury, and A. H. Matonse, 2011: Examination of change factor methodologies for climate change impact assessment. Water Resour. Res., 47, W03501, doi:10.1029/2010WR009104.

    • Search Google Scholar
    • Export Citation
  • Bates, D., M. Maechler, B. Bolker, and S. Walker, 2014: lme4: Linear mixed-effects models using Eigen and S4. R Project. [Available online at http://CRAN.R-project.org/package=lme4.]

  • Boé, J., L. Terray, E. Martin, and F. Habets, 2009: Projected changes in components of the hydrological cycle in French river basins during the 21st century. Water Resour. Res., 45, W08426, doi:10.1029/2008WR007437.

    • Search Google Scholar
    • Export Citation
  • Bosshard, T., M. Carambia, K. Georgen, S. Kotlarski, P. Krahe, M. Zappa, and C. Schar, 2013: Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour. Res., 49, 15251536, doi:10.1029/2011WR011533.

    • Search Google Scholar
    • Export Citation
  • Burger, G., T. Q. Murdock, A. T. Werner, S. R. Sobie, and A. J. Cannon, 2012: Downscaling extremes—An intercomparison of multiple statistical methods for present climate. J. Climate, 25, 43664388, doi:10.1175/JCLI-D-11-00408.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, and R. Leconte, 2011a: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401, 190202, doi:10.1016/j.jhydrol.2011.02.020.

    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, A. Poulin, and R. Leconte, 2011b: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res., 47, W12509, doi:10.1029/2011WR010602.

    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013: Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J. Hydrol., 479, 200214, doi:10.1016/j.jhydrol.2012.11.062.

    • Search Google Scholar
    • Export Citation
  • Cox, P., and D. Stephenson, 2007: A changing climate for prediction. Science, 317, 207208, doi:10.1126/science.1145956.

  • Denis, B., R. Laprise, D. Caya, and J. Cote, 2002: Downscaling ability of one-way nested regional climate models: The Big-Brother Experiment. Climate Dyn., 18, 627646, doi:10.1007/s00382-001-0201-0.

    • Search Google Scholar
    • Export Citation
  • Elguindi, N., and A. Grundstein, 2013: An integrated approach to assessing 21st century climate change over the contiguous U.S. using the NARCCAP RCM output. Climatic Change, 117, 809827, doi:10.1007/s10584-012-0552-z.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Habets, F., and Coauthors, 2013: Impact of climate change on the hydrogeology of two basins in northern France. Climatic Change, 121, 771785, doi:10.1007/s10584-013-0934-x.

    • Search Google Scholar
    • Export Citation
  • Hall, A., 2014: Projecting regional change. Science, 346, 14611462, doi:10.1126/science.aaa0629.

  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, doi:10.1007/s00382-010-0810-6.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Johnson, T., J. Butcher, A. Parker, and C. Weaver, 2012: Investigating the sensitivity of U.S. streamflow and water quality to climate Change: U.S. EPA Global Change Research Program’s 20 watersheds project. J. Water Resour. Plann. Manage., 138, 453464, doi:10.1061/(ASCE)WR.1943-5452.0000175.

    • Search Google Scholar
    • Export Citation
  • Johnson, T., and Coauthors, 2015: Modeling streamflow and water quality sensitivity to climate change and urban development in 20 U.S. watersheds. J. Amer. Water Resour. Assoc., 51, 13211341, doi:10.1111/1752-1688.12308.

    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., and A. D. Gronewald, 2013: Reconciling alternative approaches to projecting hydrologic impacts of climate change. Bull. Amer. Meteor. Soc., 94, ES133ES135, doi:10.1175/BAMS-D-13-00037.1.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., L. Brekke, T. Pruitt, and P. Duffy, 2007: Fine-resolution climate projections enhance regional climate change impact studies. Eos, Trans. Amer. Geophys. Union, 88, 504, doi:10.1029/2007EO470006.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., J. C. Adam, and A. W. Wood, 2009: Climate model based consensus on the hydrologic impacts of climate change on the Rio Lempa basin of Central America. Hydrol. Earth Syst. Sci., 13, 183194, doi:10.5194/hess-13-183-2009.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. J. Gutowski, R. Jones, L. Y. Leung, S. McGinnis, A. M. B. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311312, doi:10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2013: Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP). Climatic Change Lett., 120, 965975, doi:10.1007/s10584-013-0831-3.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2014: The North American Regional Climate Change Assessment Program dataset. National Center for Atmospheric Research Earth System Grid data portal, accessed 13 March 2016, doi:10.5065/D6RN35ST.

  • Mendoza, P. A., and Coauthors, 2015: Effects of hydrologic model choice and calibration on the portrayal of climate change impacts. J. Hydrometeor., 16, 762780, doi:10.1175/JHM-D-14-0104.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and K. A. Dunne, 2011: On the hydrologic adjustment of climate-model predictions: The potential pitfall of potential evapotranspiration. Earth Interact., 15, doi:10.1175/2010EI363.1.

    • Search Google Scholar
    • Export Citation
  • Mpelasoka, F., and F. H. S. Chiew, 2009: Influence of rainfall scenario construction methods on runoff projections. J. Hydrometeor., 10, 11681183, doi:10.1175/2009JHM1045.1.

    • Search Google Scholar
    • Export Citation
  • Neitsch, S., J. Arnold, J. Kiniry, J. Williams, and K. King, 2005: Soil and Water Assessment Tool (SWAT) theoretical documentation, version 2005. Grassland Soil and Water Research Laboratory, Agricultural Research Service, Blackland Research Center, Texas Agricultural Experiment Station Rep., 476 pp. [Available online at http://swat.tamu.edu/media/1292/swat2005theory.pdf.]

  • Pierce, D. W., A. L. Westerling, and J. Oyler, 2013: Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system. Hydrol. Earth Syst. Sci., 17, 18331850, doi:10.5194/hess-17-1833-2013.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, and J. T. Schoof, 2012: Past and future wind climates over the contiguous USA based on the North American Regional Climate Change Assessment Program model suite. J. Geophys. Res., 117, D19119, doi:10.1029/2012JD017449.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2007: How reliable are climate models? Tellus, 59A, 229, doi:10.1111/j.1600-0870.2006.00211.x.

  • Rasmussen, S. H., J. H. Christensen, D. J. Gochis, and J. C. Refsgaard, 2012: Spatial-scale characteristics of precipitation simulated by regional climate models and the implications for hydrological modeling. J. Hydrometeor., 13, 18171835, doi:10.1175/JHM-D-12-07.1.

    • Search Google Scholar
    • Export Citation
  • R Core Team, 2014: R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Available online at http://www.R-project.org/.]

  • Stainforth, D. A., M. R. Allen, E. R. Tredger, and L. A. Smith, 2007: Confidence, uncertainty and decision-support relevance in climate predictions. Philos. Trans. Roy. Soc. London, A365, 21452161, doi:10.1098/rsta.2007.2074.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, A365, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • U.S. EPA, 2013: Watershed modeling to assess the sensitivity of streamflow, nutrient, and sediment loads to potential climate change and urban development in 20 U.S. watersheds. National Center for Environmental Assessment Final Rep. EPA/600/R-12/058F, 181 pp. [Available online at http://cfpub.epa.gov/ncea/global/recordisplay.cfm?deid=256912.]

  • Wang, S. Y., R. R. Gillies, E. S. Takle, and W. J. Gutowski Jr., 2009: Evaluation of precipitation in the intermountain region as simulated by the NARCCAP regional climate models. Geophys. Res. Lett., 36, L11704, doi:10:1029/2009GL037930.

  • Weaver, C. P., R. J. Lempert, C. Brown, J. A. Hall, D. Revell, and D. Sarewitz, 2013: Improving the contribution of climate model information to decision-making: The value and demands of robust decision frameworks. Wiley Interdiscip. Rev.: Climate Change, 4, 3960, doi:10.1002/wcc.202.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and S. Dessai, 2010: Robust adaptation to climate change. Weather, 65, 180185, doi:10.1002/wea.543.

  • Wilby, R. L., L. E. Hay, W. J. Gutowski, R. W. Arritt, E. S. Takle, Z. Pan, G. H. Leavesley, and M. P. Clark, 2000: Hydrological responses to dynamically and statistically downscaled climate model output. Geophys. Res. Lett., 27, 11991202, doi:10.1029/1999GL006078.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev, and G. M. Smith, 2009: Mixed Effects Models and Extensions in Ecology with R. Springer, 574 pp., doi:10.1007/978-0-387-87458-6.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 293 94 3
PDF Downloads 226 60 1

The Effects of Downscaling Method on the Variability of Simulated Watershed Response to Climate Change in Five U.S. Basins

D. M. NoverScience and Technology Policy Fellow, American Association for the Advancement of Science, U.S. Agency for International Development, Ghana, West Africa

Search for other papers by D. M. Nover in
Current site
Google Scholar
PubMed
Close
,
J. W. WittOak Ridge Institution for Science and Education Fellow, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C.

Search for other papers by J. W. Witt in
Current site
Google Scholar
PubMed
Close
,
J. B. ButcherTetra Tech, Inc., Research Triangle Park, North Carolina

Search for other papers by J. B. Butcher in
Current site
Google Scholar
PubMed
Close
,
T. E. JohnsonOffice of Research and Development, U.S. Environmental Protection Agency, Washington, D.C.

Search for other papers by T. E. Johnson in
Current site
Google Scholar
PubMed
Close
, and
C. P. WeaverOffice of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

Search for other papers by C. P. Weaver in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulations of future climate change impacts on water resources are subject to multiple and cascading uncertainties associated with different modeling and methodological choices. A key facet of this uncertainty is the coarse spatial resolution of GCM output compared to the finer-resolution information needed by water managers. To address this issue, it is now common practice to apply spatial downscaling techniques, using either higher-resolution regional climate models or statistical approaches applied to GCM output, to develop finer-resolution information. Downscaling, however, can also introduce its own uncertainties into water resources’ impact assessments. This study uses watershed simulations in five U.S. basins to quantify the sources of variability in streamflow, nitrogen, phosphorus, and sediment loads associated with the underlying GCM compared to the choice of downscaling method (both statistically and dynamically downscaled GCM output). This study also assesses the specific, incremental effects of downscaling by comparing watershed simulations based on downscaled and nondownscaled GCM model output. Results show that the underlying GCM and the downscaling method each contribute to the variability of simulated watershed responses. The relative contribution of GCM and downscaling method to the variability of simulated responses varies by watershed and season of the year. Results illustrate the potential implications of one key methodological choice in conducting climate change impact assessments for water—the selection of downscaled climate change information.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/EI-D-15-0024.s1.

Corresponding author address: D. M. Nover, AAAS Science and Technology Policy Fellow, U.S. Agency for International Development, Ghana, West Africa. E-mail address: dmnover@gmail.com

Abstract

Simulations of future climate change impacts on water resources are subject to multiple and cascading uncertainties associated with different modeling and methodological choices. A key facet of this uncertainty is the coarse spatial resolution of GCM output compared to the finer-resolution information needed by water managers. To address this issue, it is now common practice to apply spatial downscaling techniques, using either higher-resolution regional climate models or statistical approaches applied to GCM output, to develop finer-resolution information. Downscaling, however, can also introduce its own uncertainties into water resources’ impact assessments. This study uses watershed simulations in five U.S. basins to quantify the sources of variability in streamflow, nitrogen, phosphorus, and sediment loads associated with the underlying GCM compared to the choice of downscaling method (both statistically and dynamically downscaled GCM output). This study also assesses the specific, incremental effects of downscaling by comparing watershed simulations based on downscaled and nondownscaled GCM model output. Results show that the underlying GCM and the downscaling method each contribute to the variability of simulated watershed responses. The relative contribution of GCM and downscaling method to the variability of simulated responses varies by watershed and season of the year. Results illustrate the potential implications of one key methodological choice in conducting climate change impact assessments for water—the selection of downscaled climate change information.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/EI-D-15-0024.s1.

Corresponding author address: D. M. Nover, AAAS Science and Technology Policy Fellow, U.S. Agency for International Development, Ghana, West Africa. E-mail address: dmnover@gmail.com

Supplementary Materials

    • Supplemental Materials (DOCX 285.42 KB)
Save