• Allen, G. P., and J. L. Chambers, 1998: Sedimentation in the Modern and Miocene Mahakam Delta. Indonesian Petroleum Association, 236 pp.

    • Search Google Scholar
    • Export Citation
  • Allen, J. R. L., A. L. Lamb, and P. Dark, 2007: Seasonality of δ13C and C/N ratios in modern and mid-Holocene sediments in the Severn Estuary Levels, SW Britain. Holocene, 17, 139144, doi:10.1177/0959683607073296.

    • Search Google Scholar
    • Export Citation
  • Canale, N., J. J. Ponce, N. B. Carmona, D. I. Drittanti, D. E. Olivera, M. A. Martínez, and C. N. Bournod, 2015: Sedimentología e icnología de deltas fluvio-dominados afectados por descargas hiperpícnicas de la formación Lajas (Jurásico Medio), Cuenca Neuquina, Argentina. Andean Geol., 42, 114138, doi:10.5027/andgeoV42n1-a07.

    • Search Google Scholar
    • Export Citation
  • Chandler, M. A., D. Rind, and R. Ruedy, 1992: Pangaean climate during the early Jurassic: GCM simulations and the sedimentary record of paleoclimate. Geol. Soc. Amer. Bull., 104, 543559, doi:10.1130/0016-7606(1992)104<0543:PCDTEJ>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Choi, K., 2011: External controls on the architecture of inclined heterolithic stratification (IHS) of macrotidal Sukmo Channel: Wave versus rainfall. Mar. Geol., 285, 1728, doi:10.1016/j.margeo.2011.05.002.

    • Search Google Scholar
    • Export Citation
  • Colorado Plateau Geosystems, 2014: Paleogeography of the world. DVD. [Available online at http://cpgeosystems.com/products.html.]

  • Dalrymple, R. W., C. E. Kurcinka, B. V. J. Jablonski, A. A. Ichaso, and D. A. MacKay, 2015: Deciphering the relative importance of fluvial and tidal processes in the fluvial–marine transition. Fluvial-Tidal Sedimentology, P. J. Ashworth, J. L. Best, and D. R. Parsons, Eds., Elsevier, 3–40.

  • Dark, P., and J. R. L. Allen, 2005: Seasonal deposition of Holocene banded sediments in the Severn Estuary Levels (southwest Britain): Palynological and sedimentological evidence. Quat. Sci. Rev., 24, 1133, doi:10.1016/j.quascirev.2004.08.001.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., Y. Goddéris, R. Pierrehumbert, G. Dromart, F. Fluteau, and R. Jacob, 2006a: A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochem. Geophys. Geosyst., 7, Q11019, doi:10.1029/2006GC001278.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., R. Pierrehumbert, R. Jacob, and F. Fluteau, 2006b: Modelling the primary control of paleogeography on Cretaceous climate. Earth Planet. Sci. Lett., 248, 426437, doi:10.1016/j.epsl.2006.06.007.

    • Search Google Scholar
    • Export Citation
  • Ekart, D. D., T. E. Cerling, I. P. Montañez, and N. J. Tabor, 1999: A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide. Amer. J. Sci., 299, 805827, doi:10.2475/ajs.299.10.805.

    • Search Google Scholar
    • Export Citation
  • Fielding, C. R., 2006: Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sediment. Geol., 190, 227240, doi:10.1016/j.sedgeo.2006.05.009.

    • Search Google Scholar
    • Export Citation
  • Fielding, C. R., J. P. Allen, J. Alexander, and M. R. Gibling, 2009: Facies model for fluvial systems in the seasonal tropics and subtropics. Geology, 37, 623626, doi:10.1130/G25727A.1.

    • Search Google Scholar
    • Export Citation
  • Fielding, C. R., J. P. Allen, J. Alexander, M. R. Gibling, M. C. Rygel, and J. H. Calder, 2011: Fluvial systems and their deposits in hot, seasonal semi-arid and sub-humid settings: Modern and ancient examples. From River to Rock Record: The Preservation of Fluvial Sediments and Their Subsequent Interpretation, S. K. Davidson, S. Leleu, and C. P. North, Eds., Special Publication 97, Society for Sedimentary Geology, 89–111.

  • Franzese, J., and L. A. Spalletti, 2001: Late Triassic–Early Jurassic continental extension in southwestern Gondwana: Tectonic segmentation and pre-break-up rifting. J. South Amer. Earth Sci., 14, 257270, doi:10.1016/S0895-9811(01)00029-3.

    • Search Google Scholar
    • Export Citation
  • Franzese, J., L. Spalletti, I. G. Perez, and D. Macdonald, 2003: Tectonic and paleoenvironmental evolution of Mesozoic sedimentary basins along the Andean foothills of Argentina (32°–54°S). J. South Amer. Earth Sci., 16, 8190, doi:10.1016/S0895-9811(03)00020-8.

    • Search Google Scholar
    • Export Citation
  • García, V. M., M. E. Quattrocchio, C. A. Zavala, and M. A. Martínez, 2006: Palinofacies, paleoambientes y paleoclima del grupo Cuyo (Jurásico Medio) en la Sierra de Chacaico, Cuenca Neuquina, Argentina. Rev. Esp. Micropaleontología, 38, 269288.

    • Search Google Scholar
    • Export Citation
  • Gingras, M. K., M. Rasanen, and A. Ranzi, 2002: The significance of bioturbated inclined heterolithic stratification in the southern part of the Miocene Solimoes Formation, Rio Acre, Amazonia Brazil. Palaios, 17, 591601, doi:10.1669/0883-1351(2002)017<0591:TSOBIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gonzalez-Hidalgo, J. C., R. J. Batalla, A. Cerda, and M. De Luis, 2010: Contribution of the largest events to suspended sediment transport across the USA. Land Degrad. Dev., 21, 8391, doi:10.1002/ldr.897.

    • Search Google Scholar
    • Export Citation
  • Gonzalez-Hidalgo, J. C., R. J. Batalla, and A. Cerda, 2013: Catchment size and contribution of the largest daily events to suspended sediment load on a continental scale. Catena, 102, 4045, doi:10.1016/j.catena.2010.10.011.

    • Search Google Scholar
    • Export Citation
  • Gugliotta, M., S. S. Flint, D. M. Hodgson, and G. D. Veiga, 2015: Stratigraphic record of river-dominated crevasse subdeltas with tidal influence (Lajas Formation, Argentina). J. Sediment. Res., 85, 265284, doi:10.2110/jsr.2015.19.

    • Search Google Scholar
    • Export Citation
  • Gugliotta, M., C. E. Kurcinka, R. W. Dalrymple, S. S. Flint, and D. M. Hodgson, 2016: Decoupling seasonal fluctuations in fluvial discharge from the tidal signature in ancient deltaic deposits: An example from the Neuquén Basin, Argentina. J. Geol. Soc. London, 173, 94107, doi:10.1144/jgs2015-030.

    • Search Google Scholar
    • Export Citation
  • Gulliford, A. R., S. S. Flint, and D. M. Hodgson, 2014: Testing applicability of models of distributive fluvial systems or trunk rivers in ephemeral systems: Reconstructing 3-D fluvial architecture in the Beaufort Group, South Africa. J. Sediment. Res., 84, 11471169, doi:10.2110/jsr.2014.88.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., B. A. Boville, J. T. Kiehl, P. J. Rasch, and D. L. Williamson, 1993: Description of the NCAR Community Climate Model (CCM2). NCAR Tech. Note NCAR/TN-382+STR, 112 pp.

  • Hallam, A., 1985: A review of Mesozoic climates. J. Geol. Soc. London, 142, 433445, doi:10.1144/gsjgs.142.3.0433.

  • Howell, J. A., E. Schwarz, L. A. Spalletti, and G. D. Veiga, 2005: The Neuquén Basin: An overview. Geol. Soc. London Spec. Publ., 252, 114, doi:10.1144/GSL.SP.2005.252.01.01.

    • Search Google Scholar
    • Export Citation
  • Iglesia Llanos, M. P., 2012: Palaeomagnetic study of the Jurassic from Argentina: Magnetostratigraphy and palaeogeography of South America. Rev. Paléobiol., 11, 151168.

    • Search Google Scholar
    • Export Citation
  • Iglesia Llanos, M. P., A. C. Riccardi, and S. E. Singer, 2006: Palaeomagnetic study of Lower Jurassic marine strata from the Neuquén Basin, Argentina: A new Jurassic apparent polar wander path for South America. Earth Planet. Sci. Lett., 252, 379397, doi:10.1016/j.epsl.2006.10.006.

    • Search Google Scholar
    • Export Citation
  • Jablonski, B. V. J., and R. W. Dalrymple, 2016: Recognition of strong seasonality and climatic cyclicity in an ancient, fluvially dominated, tidally influenced point bar: Middle McMurray Formation, lower Steepbank River, north-eastern Alberta, Canada. Sedimentology, 63, 552585, doi:10.1111/sed.12228.

    • Search Google Scholar
    • Export Citation
  • Jacob, R., C. Schafer, I. Foster, M. Tobis, and J. Anderson, 2001: Computational design and performance of the Fast Ocean Atmosphere Model, version one. Computational Science—ICCS 2001, V. N. Alexandrov et al., Eds., Lecture Notes in Computer Science Series, Vol. 2073, Springer, 175–184, doi:10.1007/3-540-45545-0_26.

  • Johnson, S. M., and S. E. Dashtgard, 2014: Inclined heterolithic stratification in a mixed tidal–fluvial channel: Differentiating tidal versus fluvial controls on sedimentation. Sediment. Geol., 301, 4153, doi:10.1016/j.sedgeo.2013.12.004.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and R. G. Gallimore, 1989: Pangaean climates: Megamonsoons of the megacontinent. J. Geophys. Res., 94, 33413357, doi:10.1029/JD094iD03p03341.

    • Search Google Scholar
    • Export Citation
  • Loope, D. B., C. M. Rowe, and R. M. Joeckel, 2001: Annual monsoon rains recorded by Jurassic dunes. Nature, 412, 6466, doi:10.1038/35083554.

    • Search Google Scholar
    • Export Citation
  • Martínez, M. A., M. E. Quattrocchio, and C. A. Zavala, 2002: Análisis palinofacial de la Formación Lajas (Jurásico Medio), Cuenca Neuquina, Argentina: Significado paleoambiental y paleoclimático. Rev. Esp. Micropaleontología, 34, 81104.

    • Search Google Scholar
    • Export Citation
  • Marynowski, L., A. C. Scott, M. Zaton, H. Parent, and A. C. Garrido, 2011: First multi-proxy record of Jurassic wildfires from Gondwana: Evidence from the middle Jurassic of the Neuquén Basin, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 129136, doi:10.1016/j.palaeo.2010.10.041.

    • Search Google Scholar
    • Export Citation
  • Matthews, E., 1983: Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate Appl. Meteor., 22, 474487, doi:10.1175/1520-0450(1983)022<0474:GVALUN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McIlroy, D., S. Flint, J. A. Howell, and N. Timms, 2005: Sedimentology of the tide-dominated Jurassic Lajas Formation, Neuquén Basin, Argentina. Geol. Soc. London Spec. Publ., 252, 83107, doi:10.1144/GSL.SP.2005.252.01.05.

    • Search Google Scholar
    • Export Citation
  • Moore, G. T., D. N. Hayashida, C. A. Ross, and S. R. Jacobson, 1992a: Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world: I. Results using a general circulation model. Palaeogeogr. Palaeoclimatol. Palaeoecol., 93, 113150, doi:10.1016/0031-0182(92)90186-9.

    • Search Google Scholar
    • Export Citation
  • Moore, G. T., L. C. Sloan, D. N. Hayashida, and N. P. Umrigar, 1992b: Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world: II. Sensitivity tests comparing three different paleotopographic settings. Palaeogeogr. Palaeoclimatol. Palaeoecol., 95, 229252, doi:10.1016/0031-0182(92)90143-S.

    • Search Google Scholar
    • Export Citation
  • Morgans, H. S., S. P. Hesselbo, and R. A. Spicer, 1999: The seasonal climate of the Early-Middle Jurassic, Cleveland Basin, England. Palaios, 14, 261272, doi:10.2307/3515438.

    • Search Google Scholar
    • Export Citation
  • Quattrocchio, M., V. García, M. Martínez, and C. Zavala, 2001: A hypothetic scenario for the Middle Jurassic in the southern part of the Neuquén Basin, Argentina. Asoc. Paleontológica Argent. Publ. Espec., 7, 163166.

    • Search Google Scholar
    • Export Citation
  • Ross, C. A., G. T. Moore, and D. N. Hayashida, 1992: Late Jurassic paleoclimate simulation—Paleoecological implications for ammonoid proviciality. Palaios, 7, 487507, doi:10.2307/3514847.

    • Search Google Scholar
    • Export Citation
  • Royer, D. L., R. A. Berner, I. P. Montañez, N. J. Tabor, and D. J. Beerling, 2004: CO2 as a primary driver of Phanerozoic climate. GSA Today, 14 (3), 410, doi:10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sellwood, B. W., and P. J. Valdes, 2006: Mesozoic climates: General circulation models and the rock record. Sediment. Geol., 190, 269287, doi:10.1016/j.sedgeo.2006.05.013.

    • Search Google Scholar
    • Export Citation
  • Sellwood, B. W., and P. J. Valdes, 2008: Jurassic climates. Proc. Geologists’ Assoc., 119, 517, doi:10.1016/S0016-7878(59)80068-7.

  • Sellwood, B. W., P. J. Valdes, and G. D. Price, 2000: Geological evaluation of multiple general circulation model simulations of Late Jurassic palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 156, 147160, doi:10.1016/S0031-0182(99)00138-8.

    • Search Google Scholar
    • Export Citation
  • Sisulak, C. F., and S. E. Dashtgard, 2012: Seasonal controls on the development and character of inclined heterolithic stratification in a tide-influenced, fluvially dominated channel: Fraser River, Canada. J. Sediment. Res., 82, 244257, doi:10.2110/jsr.2012.21.

    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., and E. J. Barron, 1990: “Equable” climates during Earth history? Geology, 18, 489492, doi:10.1130/0091-7613(1990)018<0489:ECDEH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stukins, S., D. W. Jolley, D. McIlroy, and A. J. Hartley, 2013: Middle Jurassic vegetation dynamics from allochthonous palynological assemblages: An example from a marginal marine depositional setting; Lajas Formation, Neuquén Basin, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol., 392, 117127, doi:10.1016/j.palaeo.2013.09.002.

    • Search Google Scholar
    • Export Citation
  • Uliana, M. A., and L. Legarreta, 1993: Hydrocarbons habitat in a Triassic-to-Cretaceous sub-Andean setting: Neuquén Basin, Argentina. J. Pet. Geol., 16, 397420, doi:10.1111/j.1747-5457.1993.tb00350.x.

    • Search Google Scholar
    • Export Citation
  • Urien, C. M., and J. J. Zambrano, 1993: Petroleum systems in the Neuquén Basin, Argentina. The Petroleum System—From Source to Trap, L. B. Magoon and W. G. Dow, Eds., AAPG Memoir, Vol. 60, American Society of Petroleum Geologists, 513–534, doi:10.1306/M60585C32.

  • Urien, C. M., J. J. Zambrano, and M. R. Yrigoyen, 1995: Petroleum basins of southern South America: An overview. Petroleum Basins of South America, A. J. Tankard, R. Suárez Soruco, and H. J. Welsink, Eds., AAPG Memoir, Vol. 62, American Society of Petroleum Geologists, 63–78, doi:10.1306/M62593C3.

  • Valdes, P., 1993: Atmospheric general circulation models of the Jurassic. Philos. Trans. Roy. Soc. London, B341, 317326, doi:10.1098/rstb.1993.0117.

    • Search Google Scholar
    • Export Citation
  • Valdes, P., and B. W. Sellwood, 1992: A palaeoclimate model for the Kimmeridgian. Palaeogeogr. Palaeoclimatol. Palaeoecol., 95, 4772, doi:10.1016/0031-0182(92)90165-2.

    • Search Google Scholar
    • Export Citation
  • Vergani, G. D., A. J. Tankard, H. J. Belotti, and H. J. Welsink, 1995: Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. Petroleum Basins of South America, A. J. Tankard, R. Suárez Soruco, and H. J. Welsink, Eds., AAPG Memoir, Vol. 62, American Society of Petroleum Geologists, 383–402, doi:10.1306/M62593C19.

  • Ward, P. D., 2006: Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere. J. Henry Press, 282 pp.

  • Wilson, A., S. Flint, T. Payenberg, E. Tohver, and L. Lanci, 2014: Architectural styles and sedimentology of the fluvial lower Beaufort Group, Karoo Basin, South Africa. J. Sediment. Res., 84, 326348, doi:10.2110/jsr.2014.28.

    • Search Google Scholar
    • Export Citation
  • Zavala, C., 1996a: Sequence stratigraphy in continental to marine transitions: An example from the Middle Jurassic Cuyo Group, South Neuquén Basin, Argentina. GeoResearch Forum, 1–2, 285293.

    • Search Google Scholar
    • Export Citation
  • Zavala, C., 1996b: High-resolution sequence stratigraphy in the Middle Jurassic Cuyo Group, South Neuquén Basin, Argentina. GeoResearch Forum, 1–2, 295304.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., K. H. Nisancioglu, F. Flatøy, M. Bentsen, I. Bethke, and H. Wang, 2011: Tropical seaways played a more important role than high latitude seaways in Cenozoic cooling. Climate Past, 7, 801813, doi:10.5194/cp-7-801-2011.

    • Search Google Scholar
    • Export Citation
  • Ziegler, A. M., G. Eshel, P. McAllister Rees, T. A. Rothfus, D. B. Rowley, and D. Sunderlin, 2003: Tracing the tropics across land and sea: Permian to present. Lethaia, 36, 227254, doi:10.1080/00241160310004657.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 379 189 5
PDF Downloads 285 146 3

Sedimentological and Paleoclimate Modeling Evidence for Preservation of Jurassic Annual Cycles in Sedimentation, Western Gondwana

View More View Less
  • 1 School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom
Restricted access

Abstract

The Lajas Formation in the Neuquén Basin, Argentina, consists of a succession of mainly deltaic deposits. In the Middle Jurassic (170 million years ago), the basin was in western Gondwana roughly at the same paleolatitude as its present location (32°–40°S). Decimeter-scale, interbedded, coarser-grained and finer-grained beds in channelized and nonchannelized deltaic deposits have been interpreted as a product of variability in river discharge. The coarser-grained sandstone beds have erosional bases and contain mudstone clasts; internal cross bedding is commonly directed paleoseawards. These beds are interpreted as deposition during river-flood conditions. In contrast, the finer-grained beds are composed of interlaminated sandstone and mudstone, deposited during interflood periods. Bidirectional ripples and millimeter-scale sand–mud laminae suggest the influence of tides. This sedimentological evidence raises the question of whether these cycles represent annual variability in fluvial input. To answer this question, a simulation using the Fast Ocean Atmosphere Model for the Middle Jurassic was run to equilibrium. The model shows that the paleoclimate of the Neuquén Basin was characterized by a strong seasonal cycle, with a wet winter and a dry summer. Model runs suggest that February mean temperatures were 28°C with 4-mm precipitation (±4 mm standard deviation) per month, whereas August mean temperatures were 8°C with 34-mm precipitation (±17 mm standard deviation) per month. The strong seasonal cycles in the simulation, representing 24% of the variance in the precipitation time series, suggest that the sedimentological cycles represent annual variations. The simulation also suggests a Middle Jurassic climate where increased seasonality of precipitation occurred farther poleward than previously thought.

Corresponding author address: Prof. David Schultz, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail address: david.schultz@manchester.ac.uk

Abstract

The Lajas Formation in the Neuquén Basin, Argentina, consists of a succession of mainly deltaic deposits. In the Middle Jurassic (170 million years ago), the basin was in western Gondwana roughly at the same paleolatitude as its present location (32°–40°S). Decimeter-scale, interbedded, coarser-grained and finer-grained beds in channelized and nonchannelized deltaic deposits have been interpreted as a product of variability in river discharge. The coarser-grained sandstone beds have erosional bases and contain mudstone clasts; internal cross bedding is commonly directed paleoseawards. These beds are interpreted as deposition during river-flood conditions. In contrast, the finer-grained beds are composed of interlaminated sandstone and mudstone, deposited during interflood periods. Bidirectional ripples and millimeter-scale sand–mud laminae suggest the influence of tides. This sedimentological evidence raises the question of whether these cycles represent annual variability in fluvial input. To answer this question, a simulation using the Fast Ocean Atmosphere Model for the Middle Jurassic was run to equilibrium. The model shows that the paleoclimate of the Neuquén Basin was characterized by a strong seasonal cycle, with a wet winter and a dry summer. Model runs suggest that February mean temperatures were 28°C with 4-mm precipitation (±4 mm standard deviation) per month, whereas August mean temperatures were 8°C with 34-mm precipitation (±17 mm standard deviation) per month. The strong seasonal cycles in the simulation, representing 24% of the variance in the precipitation time series, suggest that the sedimentological cycles represent annual variations. The simulation also suggests a Middle Jurassic climate where increased seasonality of precipitation occurred farther poleward than previously thought.

Corresponding author address: Prof. David Schultz, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail address: david.schultz@manchester.ac.uk
Save