Urban Effects on Regional Climate: A Case Study in the Phoenix and Tucson “Sun Corridor”

Zhao Yang Department of Atmospheric Science, The University of Arizona, Tucson, Arizona

Search for other papers by Zhao Yang in
Current site
Google Scholar
PubMed
Close
,
Francina Dominguez Department of Atmospheric Sciences, University of Illinois, Urbana, Illinois

Search for other papers by Francina Dominguez in
Current site
Google Scholar
PubMed
Close
,
Hoshin Gupta Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

Search for other papers by Hoshin Gupta in
Current site
Google Scholar
PubMed
Close
,
Xubin Zeng Department of Atmospheric Science, The University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
, and
Laura Norman U.S. Geological Survey, Western Geographic Science Center, Tucson, Arizona

Search for other papers by Laura Norman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land-use and land-cover change (LULCC) due to urban expansion alter the surface albedo, heat capacity, and thermal conductivity of the surface. Consequently, the energy balance in urban regions is different from that of natural surfaces. To evaluate the changes in regional climate that could arise because of projected urbanization in the Phoenix–Tucson corridor, Arizona, this study applied the coupled WRF Model–Noah–Urban Canopy Model (UCM; which includes a detailed urban radiation scheme) to this region. Land-cover changes were represented using land-cover data for 2005 and projections to 2050, and historical North American Regional Reanalysis (NARR) data were used to specify the lateral boundary conditions. Results suggest that temperature changes will be well defined, reflecting the urban heat island (UHI) effect within areas experiencing LULCC. Changes in precipitation are less robust but seem to indicate reductions in precipitation over the mountainous regions northeast of Phoenix and decreased evening precipitation over the newly urbanized area.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/EI-D-15-0027.s1.

Corresponding author address: Francina Dominguez, Department of Atmospheric Sciences, University of Illinois, 101 Atmospheric Sciences Building, 105 S. Gregory St., Urbana, IL 61801-3070. E-mail address: francina@illinois.edu

This article is included in the Biogeophysical Climate Impacts of Land Use and Land Cover Change (LULCC) special collection.

Abstract

Land-use and land-cover change (LULCC) due to urban expansion alter the surface albedo, heat capacity, and thermal conductivity of the surface. Consequently, the energy balance in urban regions is different from that of natural surfaces. To evaluate the changes in regional climate that could arise because of projected urbanization in the Phoenix–Tucson corridor, Arizona, this study applied the coupled WRF Model–Noah–Urban Canopy Model (UCM; which includes a detailed urban radiation scheme) to this region. Land-cover changes were represented using land-cover data for 2005 and projections to 2050, and historical North American Regional Reanalysis (NARR) data were used to specify the lateral boundary conditions. Results suggest that temperature changes will be well defined, reflecting the urban heat island (UHI) effect within areas experiencing LULCC. Changes in precipitation are less robust but seem to indicate reductions in precipitation over the mountainous regions northeast of Phoenix and decreased evening precipitation over the newly urbanized area.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/EI-D-15-0027.s1.

Corresponding author address: Francina Dominguez, Department of Atmospheric Sciences, University of Illinois, 101 Atmospheric Sciences Building, 105 S. Gregory St., Urbana, IL 61801-3070. E-mail address: francina@illinois.edu

This article is included in the Biogeophysical Climate Impacts of Land Use and Land Cover Change (LULCC) special collection.

Save
  • Baik, J. J., Y. H. Kim, and H. Y. Chun, 2001: Dry and moist convection forced by an urban heat island. J. Appl. Meteor., 40, 14621475, doi:10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balling, R. C., and S. W. Brazel, 1987: Recent changes in Phoenix, Arizona summertime diurnal precipitation patterns. Theor. Appl. Climatol., 38, 5054, doi:10.1007/BF00866253.

    • Search Google Scholar
    • Export Citation
  • Brazel, A., P. Gober, S. J. Lee, S. Grossman-Clarke, J. Zehnder, B. Hedquist, and E. Comparri, 2007: Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Climate Res., 33, 171182, doi:10.3354/cr033171.

    • Search Google Scholar
    • Export Citation
  • Burian, S. J., and J. M. Shepherd, 2005: Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrol. Processes, 19, 10891103, doi:10.1002/hyp.5647.

    • Search Google Scholar
    • Export Citation
  • Cao, M., and Z. Lin, 2014: Impact of urban surface roughness length parameterization scheme on urban atmospheric environment simulation. J. Appl. Math., 2014, 267683, doi:10.1155/2014/267683.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1979: Rainfall changes in summer caused by St. Louis. Science, 205, 402404, doi:10.1126/science.205.4404.402.

  • Changnon, S. A., 1980: More on the La Porte anomaly: A review. Bull. Amer. Meteor. Soc., 61, 702711, doi:10.1175/1520-0477(1980)061<0702:MOTLPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Ed., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.

  • Changnon, S. A., and N. E. Westcott, 2002: Heavy rainstorms in Chicago: Increasing frequency, altered impacts, and future implications. J. Amer. Water Resour. Assoc., 38, 14671475, doi:10.1111/j.1752-1688.2002.tb04359.x.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., F. A. Huff, P. T. Schickedanz, and J. L. Vogel, 1977: Weather Anomalies and Impacts. Vol. 1, Summary of METROMEX, Illinois State Water Survey, 260 pp.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chow, W. T. L., D. Brennan, and A. J. Brazel, 2012: Urban heat island research in Phoenix, Arizona theoretical contributions and policy applications. Bull. Amer. Meteor. Soc., 93, 517530, doi:10.1175/BAMS-D-11-00011.1.

    • Search Google Scholar
    • Export Citation
  • Climate Central, 2014: Summer in the city: Hot and getting hotter. Climate Central Rep., 29 pp. [Available online at http://assets.climatecentral.org/pdfs/UrbanHeatIsland.pdf.]

  • Collins, W. D., and Coauthors., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN–464+STR, 214 pp.

  • Commission for Environmental Cooperation, 2013: British Columbia 2005-2010 land cover change. Commission for Environmental Cooperation, accessed 10 February 2014. [Available online at http://www.cec.org/naatlas/.]

  • Craig, K., and R. Bornstein, 2002: MM5 simulation of urban induced convective precipitation over Atlanta. Preprints, Fourth Conf. on the Urban Environment, Norfolk, VA, Amer. Meteor. Soc., 5–6.

  • Georgescu, M., G. Miguez-Macho, L. T. Steyaert, and C. P. Weaver, 2008: Sensitivity of summer climate to anthropogenic land-cover change over the Greater Phoenix, AZ, region. J. Arid Environ., 72, 13581373, doi:10.1016/j.jaridenv.2008.01.004.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., G. Miguez-Macho, L. T. Steyaert, and C. P. Weaver, 2009a: Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes. J. Geophys. Res., 114, D05110, doi:10.1029/2008JD010745.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., G. Miguez-Macho, L. T. Steyaert, and C. P. Weaver, 2009b: Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 2. Dynamical and thermodynamical response. J. Geophys. Res., 114, D05111, doi:10.1029/2008JD010762.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2011: An alternative explanation of the semiarid urban area “oasis effect.” J. Geophys. Res., 116, D24113, doi:10.1029/2011JD016720.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., A. Mahalov, and M. Moustaoui, 2012: Seasonal hydroclimatic impacts of Sun Corridor expansion. Environ. Res. Lett., 7, 034026, doi:10.1088/1748-9326/7/3/034026.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2013: Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Climate Change, 3, 3741, doi:10.1038/nclimate1656.

    • Search Google Scholar
    • Export Citation
  • Hu, H., and F. Dominguez, 2015: Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes. J. Hydrometeor., 16, 1935, doi:10.1175/JHM-D-14-0073.1.

    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and J. L. Vogel, 1978: Urban, topographic and diurnal effects on rainfall in the St. Louis region. J. Appl. Meteor., 17, 565577, doi:10.1175/1520-0450(1978)017<0565:UTADEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer parameterization in the NCEP Eta model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., Boston, MA, 354–355.

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., K. C. Seto, A. Schneider, Z. Liu, L. Zhou, and W. Wang, 2007: Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Climate, 20, 22992306, doi:10.1175/JCLI4109.1.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, doi:10.2151/jmsj.82.67.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, doi:10.1023/A:1019207923078.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., K. Nawata, A. Suzuki-Parker, Y. Takane, and N. Furuhashi, 2014: Mechanism of precipitation increase with urbanization in Tokyo as revealed by ensemble climate simulations. J. Appl. Meteor. Climatol., 53, 824839, doi:10.1175/JAMC-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Lin, C. Y., W. C. Chen, P. L. Chang, and Y. F. Sheng, 2011: Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J. Appl. Meteor. Climatol., 50, 339353, doi:10.1175/2010JAMC2504.1.

    • Search Google Scholar
    • Export Citation
  • McGeehin, M. A., and M. Mirabelli, 2001: The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ. Health Perspect., 109, 185189, doi:10.2307/3435008.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Norman, L. M., M. Feller, and M. L. Villarreal, 2012: Developing spatially explicit footprints of plausible land-use scenarios in the Santa Cruz watershed, Arizona and Sonora. Landscape Urban Plann., 107, 225235, doi:10.1016/j.landurbplan.2012.06.015.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, M. Wang, and B. M. Svoma, 2013: Assessing summertime urban air conditioning consumption in a semiarid environment. Environ. Res. Lett., 8, 034022, doi:10.1088/1748-9326/8/3/034022.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, doi:10.1175/EI156.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2006: Evidence of urban-induced precipitation variability in arid climate regimes. J. Arid Environ., 67, 607628, doi:10.1016/j.jaridenv.2006.03.022.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Svoma, B. M., and A. Brazel, 2010: Urban effects on the diurnal temperature cycle in Phoenix, Arizona. Climate Res., 41, 2129, doi:10.3354/cr00831.

    • Search Google Scholar
    • Export Citation
  • Swaid, H., 1993: The role of radiative-convective interaction in creating the microclimate of urban street canyons. Bound.-Layer Meteor., 64, 231259, doi:10.1007/BF00708965.

    • Search Google Scholar
    • Export Citation
  • Takahashi, H., 2003: Secular variation in the occurrence property of summertime daily rainfall amount in and around the Tokyo Metropolitan Area. Tenki, 50, 3141.

    • Search Google Scholar
    • Export Citation
  • Tayanç, M., M. Karaca, and O. Yenigün, 1997: Annual and seasonal air temperature trend patterns of climate change and urbanization effects in relation to air pollutants in Turkey. J. Geophys. Res., 102, 19091919, doi:10.1029/96JD02108.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., F. Chen, and H. Kusaka, 2006: Implementation and evaluation of a single-layer urban canopy model in WRF/Noah. Seventh WRF Users’ Workshop, Boulder, CO, NCAR, 5.6. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/Session05/5_6_Tewari.pdf.]

  • U.S. Census Bureau, 2005: 2005 interim state population projections. Accessed 10 March 2014. [Available online at http://www.census.gov/population/projections/data/state/projectionsagesex.html.]

  • U.S. Census Bureau, 2010: Population division interim state population projections. Accessed 15 March 2014. [Available online at http://www.census.gov/population/www/cen2010/glance/.]

  • Veerbeek, W., H. Denekew, A. Pathirana, D. Brdjanovic, C. Zevenbergen, and T. K. Bacchin, 2011: Urban growth modeling to predict the changes in the urban microclimate and urban water cycle. Preprints, 12th Int. Conf. on Urban Drainage, Porto Alegre/RS, Brazil, CAPES, PAP005339. [Available online at https://web.sbe.hw.ac.uk/staffprofiles/bdgsa/temp/12th%20ICUD/PDF/PAP005339.pdf.]

  • Zoubir, A. M., and B. Boashash, 1998: The bootstrap and its application in signal processing. IEEE Signal Process. Mag., 15, 5676, doi:10.1109/79.647043.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10261 8177 320
PDF Downloads 1302 288 11