• Albignat, J. P., , and R. J. Reed, 1980: The origin of African wave disturbances during phase III of GATE. Mon. Wea. Rev., 108, 18271839, doi:10.1175/1520-0493(1980)108<1827:TOOAWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arndt, D. S., , M. O. Baringer, , and M. R. Johnson, Eds., 2010: State of the Climate in 2009. Bull. Amer. Meteor. Soc., 91, s1s222, doi:10.1175/BAMS-91-7-StateoftheClimate.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., , and C. D. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, doi:10.1175/MWR2884.1.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and et al. , 2009: US GODAE: Global ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM). Oceanography, 22, 6475, doi:10.5670/oceanog.2009.39.

    • Search Google Scholar
    • Export Citation
  • Chauvin, F., , R. Roehrig, , and J.-P. Lafore, 2010: Intraseasonal variability of the Saharan heat low and its link with midlatitudes. J. Climate, 23, 25442561, doi:10.1175/2010JCLI3093.1.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., , and E. K. Vizy, 2015: Detection and analysis of an amplified warming of the Sahara Desert. J. Climate, 28, 65606580, doi:10.1175/JCLI-D-14-00230.1.

    • Search Google Scholar
    • Export Citation
  • Diaz, M. L., , and A. Aiyyer, 2013: Energy dispersion in African easterly waves. J. Atmos. Sci., 70, 130145, doi:10.1175/JAS-D-12-019.1.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M., , and J. Molinari, 2000: Climatology of sign reversals of the meridional potential vorticity gradient over Africa and Australia. Mon. Wea. Rev., 128, 38903900, doi:10.1175/1520-0493(2001)129<3890:COSROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., , S. Janicot, , and A. Viltard, 1999: Easterly wave regimes and associated convection over West Africa and tropical Atlantic Ocean: Results from NCEP/NCAR and ECMWF reanalysis. Climate Dyn., 15, 795822, doi:10.1007/s003820050316.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., 1990: Convection over tropical Africa and the Atlantic Ocean during northern summer. Part II: Modulation by easterly waves. Mon. Wea. Rev., 118, 18551868, doi:10.1175/1520-0493(1990)118<1855:COTAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low-level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 362380, doi:10.1002/qj.49709540409.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., 2012: To the 75th anniversary of the discovery of African easterly waves. Proc. 30th Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra Beach, FL, Amer. Meteor. Soc., S3.1. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Paper206073.html.]

  • Fink, A. H., , and A. Reiner, 2003: Spatiotemporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108, 4332, doi:10.1029/2002JD002816.

    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., , R. A. Weller, , D. L. Rudnick, , C. C. Eriksen, , C. M. Lee, , K. H. Brink, , C. A. Fox, , and R. R. Leben, 2002: Mesoscale eddies, coastal upwelling, and the upper-ocean heat budget in the Arabian Sea. Deep-Sea Res. II, 49, 22312264, doi:10.1016/S0967-0645(02)00036-X.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., , G. Kiladis, , and C. Thorncroft, 2006: Three dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245, doi:10.1175/JAS3742.1.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., , and K. H. Cook, 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133, 13111327, doi:10.1175/MWR2916.1.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., , and K. H. Cook, 2007: A study of the energetics of African easterly waves using a regional climate model. J. Atmos. Sci., 64, 421440, doi:10.1175/JAS3851.1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., , C. B. Montégut, , J.-J. Luo, , S. K. Behera, , S. Masson, , and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21, 56035623, doi:10.1175/2008JCLI2158.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , J. E. Janowiak, , P. A. Arkin, , and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kahana, R., , B. Ziv, , Y. Enzel, , and U. Dayan, 2002: Synoptic climatology of major floods in the Negev Desert, Israel. Int. J. Climatol., 22, 867882, doi:10.1002/joc.766.

    • Search Google Scholar
    • Export Citation
  • Kahana, R., , B. Ziv, , U. Dayan, , and Y. Enzel, 2004: Atmospheric predictors for major floods in the Negev Desert, Israel. Int. J. Climatol., 24, 11371147, doi:10.1002/joc.1056.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , C. D. Thorncroft, , and N. G. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, doi:10.1175/JAS3741.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2007: Tropical–extratropical interactions related to upper-level troughs at low latitudes. Dyn. Atmos. Oceans, 43, 3662, doi:10.1016/j.dynatmoce.2006.06.003.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , P. Alpert, , and T. N. Krishnamurti, 1997a: Interaction of topography and tropospheric flow—A possible generator for the Red Sea trough? Meteor. Atmos. Phys., 63, 149158, doi:10.1007/BF01027381.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , P. Alpert, , and T. N. Krishnamurti, 1997b: Red Sea trough/cyclone development—Numerical investigation. Meteor. Atmos. Phys., 63, 159170, doi:10.1007/BF01027382.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , P. Alpert, , and M. Dayan, 2004: The role of atmospheric processes associated with Hurricane Olga in December 2001 floods in Israel. J. Hydrometeor., 5, 12591270, doi:10.1175/JHM-399.1.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , J. S. Breitgand, , and S. B. Feldstein, 2012: A conceptual model for the identification of active Red Sea trough synoptic events over the southeastern Mediterranean. J. Appl. Meteor. Climatol., 51, 962971, doi:10.1175/JAMC-D-11-0223.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and et al. , 2004: The Atlantic (hurricane) database reanalysis project: Documentation for 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Lasailly-Jacob, V., , and M. Peyraut, 2015: Social and spatial inequality linked to flood-induced displacements in Burkina Faso in 2009 and 2010. Environmental Migration and Social Inequality, R. McLeman, J. Schade, and T. Faist, Eds., Advances in Global Change Research Series, Vol. 61, Springer, 57–72.

  • Lee, H.-T., 2014: Climate algorithm theoretical basis document (C-ATBD): Outgoing longwave radiation (OLR)—Daily. NOAA CDR Program Doc. CDRP-ATBD-0526, 46 pp.

  • Leroux, S., , N. M. Hall, , and G. N. Kiladis, 2011: Intermittent African easterly wave activity in a dry atmospheric model: Influence of the extratropics. J. Climate, 24, 53785396, doi:10.1175/JCLI-D-11-00049.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., , K. E. Robertson, , and C. M. Hill, 2005: Origin and propagation of a disturbance associated with an African easterly wave as a precursor of Hurricane Alberto (2000). Mon. Wea. Rev., 133, 32763298, doi:10.1175/MWR3035.1.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., , J.-P. Duvel, , and M. Desbois, 1993: Diurnal variations and modulation by easterly waves of the size distribution of convective cloud clusters over West Africa and the Atlantic Ocean. Mon. Wea. Rev., 121, 3749, doi:10.1175/1520-0493(1993)121<0037:DVAMBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., , C. D. Thorncroft, , and A. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, doi:10.1175/JCLI3920.1.

    • Search Google Scholar
    • Export Citation
  • Norquist, C. D., , E. E. Recker, , and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334342, doi:10.1175/1520-0493(1977)105<0334:TEOAWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Payne, S. W., , and M. M. McGarry, 1977: The relationship of satellite inferred convective activity to easterly waves over West Africa and the adjacent ocean during phase III of GATE. Mon. Wea. Rev., 105, 413420, doi:10.1175/1520-0493(1977)105<0413:TROSIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poan, D. E., , J.-P. Lafore, , R. Roehrig, , and F. Couvreux, 2014: Internal processes within the African easterly wave system. Quart. J. Roy. Meteor. Soc., 141, 11211136, doi:10.1002/qj.2420.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., , D. C. Norquist, , and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Roehrig, R., , F. Chauvin, , and J.-P. Lafore, 2011: 10–25-day intraseasonal variability of convection over the Sahel: A role of the Saharan heat low and midlatitudes. J. Climate, 24, 58635878, doi:10.1175/2011JCLI3960.1.

    • Search Google Scholar
    • Export Citation
  • Saaroni, H., , B. Ziv, , A. Bitan, , and P. Alpert, 1998: Easterly wind storms over Israel. Theor. Appl. Climatol., 59, 6177, doi:10.1007/s007040050013.

    • Search Google Scholar
    • Export Citation
  • Schott, F., 1983: Monsoon response of the Somali Current and associated upwelling. Prog. Oceanogr., 12, 357381, doi:10.1016/0079-6611(83)90014-9.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , P. E. Ciesielski, , D. E. Stevens, , and H.-C. Kuo, 1991: Potential vorticity modeling of the ITCZ and Hadley circulation. J. Atmos. Sci., 48, 14931509, doi:10.1175/1520-0469(1991)048<1493:PVMOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., , and N. S. Diffenbaugh, 2014: Projected changes in African easterly wave intensity and track in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 111, 68826887, doi:10.1073/pnas.1319597111.

    • Search Google Scholar
    • Export Citation
  • Spinks, J., , and Y.-L. Lin, 2015: Variability of the subtropical highs, African easterly jet and easterly wave intensities over North Africa and Arabian Peninsula in late summer. Int. J. Climatol., 35, 35403555, doi:10.1002/joc.4226.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , N. M. J. Hall, , and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607, doi:10.1175/2008JAS2575.1.

    • Search Google Scholar
    • Export Citation
  • Tsvieli, Y., , and A. Zangvil, 2005: Synoptic climatological analysis of wet and dry Red Sea troughs over Israel. Int. J. Climatol., 25, 19972015, doi:10.1002/joc.1232.

    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., , J. E. Pinzon, , M. E. Brown, , D. A. Slayback, , E. W. Pak, , R. Mahoney, , E. F. Vermote, , and N. El Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation data. Int. J. Remote Sens., 26, 44854498, doi:10.1080/01431160500168686.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and D. E. Harrison, 2004: Interannual Indian rainfall variability and Indian Ocean sea surface temperature anomalies. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 247–259.

  • Viste, E., , and A. Sorteberg, 2013: The effect of moisture transport variability on Ethiopian summer precipitation. Int. J. Climatol., 33, 31063123, doi:10.1002/joc.3566.

    • Search Google Scholar
    • Export Citation
  • Vizy, E., , and K. Cook, 2009: A mechanism for African monsoon breaks: Mediterranean cold air surges. J. Geophys. Res., 114, D01104, doi:10.1029/2008JD010654.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., , B. Hoskins, , and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654, doi:10.1175/1520-0469(2003)060<1637:CCEWAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziv, B., , U. Dayan, , and D. Sharon, 2005: A mid-winter, tropical extreme flood-producing storm in southern Israel: Synoptic scale analysis. Meteor. Atmos. Phys., 88, 5363, doi:10.1007/s00703-003-0054-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 3
PDF Downloads 9 9 4

Convective Outbreak over the Red Sea and Downstream Easterly Waves

View More View Less
  • 1 University of Zululand, KwaDlangezwa, South Africa, and Physics Department, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico
© Get Permissions
Restricted access

Abstract

This study analyzes a convective outbreak over the Red Sea on 25 August 2009 that generated easterly waves over the Sahel, floods in Ouagadougou, and a hurricane in the east Atlantic. The convective outbreak occurred on the equatorward flank of the African easterly jet 18°–22°N and associated meridional heating gradients over the Arabian Peninsula. The Rift Valley mountains induced a vertical orographic undulation and cyclonic perturbation. Two thunderstorm clusters over the southern Red Sea received moist inflow from the Ethiopian highlands and northern Red Sea. This group of three easterly waves intensified downstream over the Sahel. One of the convective triggers was enhancement of the Arabian Ridge by the northern subtropical jet. Statistical analyses indicate that African easterly waves and subsequent tropical storms are more influenced by upstream kinematic shear than thermodynamic energy. The work offers new insights on the formation of easterly waves over the northern Rift Valley.

a Corresponding author address: Mark R. Jury, Route 108, Physics Department, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico 00681. E-mail address: mark.jury@upr.edu

Abstract

This study analyzes a convective outbreak over the Red Sea on 25 August 2009 that generated easterly waves over the Sahel, floods in Ouagadougou, and a hurricane in the east Atlantic. The convective outbreak occurred on the equatorward flank of the African easterly jet 18°–22°N and associated meridional heating gradients over the Arabian Peninsula. The Rift Valley mountains induced a vertical orographic undulation and cyclonic perturbation. Two thunderstorm clusters over the southern Red Sea received moist inflow from the Ethiopian highlands and northern Red Sea. This group of three easterly waves intensified downstream over the Sahel. One of the convective triggers was enhancement of the Arabian Ridge by the northern subtropical jet. Statistical analyses indicate that African easterly waves and subsequent tropical storms are more influenced by upstream kinematic shear than thermodynamic energy. The work offers new insights on the formation of easterly waves over the northern Rift Valley.

a Corresponding author address: Mark R. Jury, Route 108, Physics Department, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico 00681. E-mail address: mark.jury@upr.edu
Save